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ABSTRACT
Indeed.com has grown rapidly over the past few years with the mis-
sion to help more people get jobs. Many applications have sprouted
up to better serve job seekers’ different needs, such as search, rec-
ommendations, email invitation and so on. Ensuring same level of
great user experience across these different channels have become
an increasing challenge for the company, due to slightly different
objectives and optimization goals of these different applications.

In this work, we solved the challenge by building a large scale
jobs filter that focuses on identifying and removing negativematches
of jobs and job seekers, which would normally have markedly ad-
verse impact on user experience. The system encompasses a rule-
based engine and various machine learning technologies. It has
been running in production since 2019 last year with significantly
improved performance results.

1 INTRODUCTION
Indeed is the #1 job site in the world with over 250 million unique
visitors every month. As a company, Indeed strives to put job seek-
ers first, giving them free access to search for jobs, post resumes, and
research companies. Job seekers come to indeed.com to find their
perfect jobs. Employers come to our website to post and sponsor
jobs. Every day, we connect millions of people to new opportunities.

As Indeed continues to grow, we’re finding more ways to help
people get jobs. We’re also offering more ways job seekers can
see those jobs. For instance, job seekers can search directly on
Indeed.com, receive job recommendations, view jobs through Tar-
geted Display Ads, or even receive email invitations to apply – to
name just a few. While each channel presents jobs in a slightly
different way, our goal for each remains the same: showing the
right jobs to the right job seekers.

However, if we miss the mark with the jobs we present, job
seekers may lose trust in our ability to connect them with their

next opportunities. Our mission is to help people get jobs, not waste
their time. Thus, ensuring a universal high quality job to job seeker
match across all channels becomes critically important to ensure
good user experience that our job seekers have been enjoying with
the Indeed provided services.

Some of the common ways we would consider a job to be wrong
for a job seeker are if it:

• Pays less than their expected salary range
• Requires special licenses or certificates they do not have
• Is located outside their preferred geographic area
• Is in a completely unrelated field, such as CTOs being offered
barista jobs

• Is in a related filed but mismatched, such as nurses and
doctors being offered the same jobs

In order to mitigate this issue, we built an large scale intelligent
jobs filter, which can be applied to user facing applications so that
we can filter out jobs that are obviously mismatched with the job
seeker before they are shown to the job seeker. Our solution uses
a combination of carefully designed rules and machine learning
technologies, and our analysis shows it to be very efficient and
effective. The major contributions of our work include

• This is a real scalable production system in a large ecosys-
tem with successful metrics improvement. We present a few
design challenges on some of the innovative engineering
considerations. We also share some of our operational expe-
rience in our unique business environment.

• We innovatively use a combination of a rule based engine
and machine learning technologies especially deep learning
to achieve both efficiency and effectiveness and to achieve
excellent performance enhancement.
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• All these rules can be easily plugged in and adapted for
different applications dynamically, so that they are very easy
to use and scale.

We hope our work can shed some light on similar problems
in the industry. The rest of the paper is organized as follows. In
Section 2 we provide the peer work in the related fields. Section
3 gives the system architecture. Section 4 and Section 5 describe
in details two of the machine learning based rules we use in the
system and their performance evaluation. Section 6 gives some
operational experience while section 7 concludes this paper.

2 RELATEDWORK
In the work [2], the authors presentWide & Deep learning to jointly
train wide linear models and deep neural networks so as to combine
the benefits of memorization and generalization for recommender
systems. In our jobs filter work, one of our rules are based on this
research with some adaptation and engineering innovation.

Authors in [8] use embedding to combine two approaches to
represent longer pieces of text while having minimal computational
complexity, i.e. meaningful combining word vectors through simple
vector addition and learning representations of phrases through a
single token.

Further, in our previous work [7], we presented to use graph
embedding to learn job representation based on job seeker’s job
position progress and employment change and used it in career
move prediction at Indeed.com with encouraging performance.
A few of our embedding-based rules are based on our previous
research work.

For the machine learning and rule-engine hybrid applications, an
example can be found in [12], where the authors combine a machine
learning algorithm with a rule-based expert system to improve the
accuracy of results by filtering false positives and dealing with false
negatives, where the machine learning algorithm provides a base
model trained with a label corpus. Our work is also designed on
the basis of a hybrid of machine learning and a rule-based engine
to achieve job and job seeker match efficiency and effectiveness.

3 SYSTEM ARCHITECTURE
Engineering wise, the jobs filter is a complex system due to its
scalability requirement and the support of various applications. At
a high level, it consists of the following components, as shown in
Figure 1:

• Jobs Filter Service. This is a high throughput, low latency
application service that evaluates potential match-ups of jobs
to users, identified by ID. If the service determines that the
job is appropriate for the user ID, it returns an ALLOW deci-
sion; otherwise it returns a VETO. This service is horizontally
scalable so it can serve many real-time Indeed applications.

• Job Profile. This is a data storage service that provides high
throughput, low latency performance job meta data. It re-
trieves job attributes such as estimated salary, job titles, and
job locations at serving time. The job profile uses Indeed
NLP libraries and machine learning technologies to extract
or aggregate user attributes.

• User Profile. Similar to the job profile, but it provides at-
tributes about the job seeker rather than the job. Like the

Figure 1: The system architecture of our jobs filter to im-
prove the job seeker experience.

job profile, it is a data storage service that provides high
throughput, low latency performance. It retrieves job seeker
attributes such as expected salary, current job title, and pre-
ferred job locations at serving time. Like the job profile, it
also uses Indeed NLP libraries and machine learning tech-
nologies to extract or aggregate user attributes.

• Offline Evaluation Platform. It consumes historic data to
evaluate rule effectiveness without actually integrating with
the upstream applications. It is also heavily used for fine-
tuning existing rules, identifying new rules, and validating
new rules and new models.

• Offline Model Training. This component consists of our
offline training algorithms, with which we train models that
can be used in the jobs filter rules at serving time for evalua-
tion.

The jobs filter uses a set of rules to improve the quality of jobs
displayed to any given job seeker. Rules can be simple: “Do not
show a job requiring professional licenses to job seekers who don’t
possess such licenses,” or “Do not show jobs to a job seeker if they
come with a significant pay cut.” They can also be complex: “Do
not show jobs to the job seeker if we are confident the job seeker
will not be interested in the job titles,” or “Do not show jobs to the
job seeker if our complex predictive models suggest the job seeker
will not be interested in them.”

All rules are compiled into a decision engine library. We share
this library in our Jobs Filter Service and Offline Evaluation
Platform, so that they are completely in sync for cross-validation,
performance evaluation.
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4 FILTER RULES TO IMPROVE JOB MATCH
QUALITY

Although the underlying data for building jobs filter rules might
be complex to acquire, most of the heuristic rules themselves are
straightforward to design and implement. These rules are very
effective at capturing edge cases to avoid degraded user experience.

To improve efficiency, we also extensively usedmachine learning,
especially deep learning when designing the rules. In this section,
we present two deep learning based rules to illustrate our design
and implementation.

4.1 Inferred Title Similarity
In this rule, we build title transition embedding and use that to
decide if a job should be shown to the job seeker.

The purpose of title transition embedding is to convert titles into
a sparse vector in the space of all normalized titles, in a way that the
transition relation between normalized tiles can be captured.We can
then use it for similarity calculations. A variety of graph embedding
algorithms exists for computing title transition embedding [5, 9, 13],
in addition to our previous work [7].

Here we present another algorithm to compute title transition
embedding, as illustrated in Algorithm 1. Unlike graph embedding
models, this algorithm simply takes the distribution of the first and
second order transitions of a given normalized title as its repre-
sentation. Its advantage lies in the interpretability of the resulting
embedding vectors, which facilitates troubleshooting in production
environment. The modeling result generated from this algorithm
is then loaded into Jobs Filter Service , which can be retrieved in
real-time with extremely low latency.

Algorithm 1: Title transition embedding generation used
in the jobs filter.
Result: The sparse representation of each normalized title

transition in the space of all normalized titles.
1) Collect aggregation of most recent job titles and the
second recent job titles from the resume database. Place a
threshold 𝜏 on the counts to exclude sparse entries. ;
2) For each current title, group all previous titles of the job
seekers together along with the number of instances. ;
3) Normalize the counts by dividing them by total
occurrence of each current title. ;

4) Filter out entries with weights that are too low to mitigate
false signals ;

Weweight the job seeker’s resume title and titles from their clicks
and applies and treat them as the job seeker’s inferred titles. Then
we useWeighted Jaccard Similarity to decide if the job match is high
quality. Let 𝑣1 and 𝑣2 be the embedding vectors of two normalized
titles, 𝑣1 ∩ 𝑣2 be the set of normalized titles corresponding to non-
zeros entries in both 𝑣1 and 𝑣2, 𝑣1∪𝑣2 be the set of normalized titles
corresponding to non-zeros entries in 𝑣1 or 𝑣2. Then the similarity
is computed as:

𝑆𝑖𝑚(𝑣1, 𝑣2) =
∑
𝑖∈𝑣1∩𝑣2 (min(𝑣1,𝑖 , 𝑣2,𝑖 )/𝑓𝑖 )∑
𝑗 ∈𝑣1∪𝑣2 (max(𝑣1,𝑖 , 𝑣2,𝑖 )/𝑓𝑗 )

(1)

where 𝑓𝑖 and 𝑓𝑗 are the frequencies of the corresponding normalized
title. The procedure of making job veto decision using this similarity
score is shown in Algorithm 2.

Algorithm 2: The Weighted Jaccard Similarity used in In-
ferred Title Similarity to allow or veto the job to the job
seeker match.
Result: Allow or Veto the job to the job seeker
vector_job_titles = get_vector(job_title) ;
while user_inferred_title in user_inferred_titles do

vector_user_inferred_title =
get_vector(user_inferred_title) ;
max_similarity_score = Max(max_similarity_score,
compute_similarity_(vector_job_title,
vector_user_inferred_title)) ;
if max_similarity_score > 𝜏 then

Allow the pair ;
end
else

Veto the pair;
end

end

4.2 User Response Prediction Model
In this rule, we use a user response prediction model to filter out
jobs that the job seeker is less likely to be interested in.

In online advertising and recommender systems, user response
prediction models are usually used to predict the probability that
users respond positively to certain items by clicking on them or
performing other actions. These probability scores are then used to
rank all candidate items to generate top-K choices [1]. A common
practice is to set a threshold to filter out those items with low scores.
Although the models themselves are trained to predict positive
reactions from users, the assumption here is that the low scores
generated by the models also indicate poor match quality, which is
usually true for properly-trained models.

When designing our machine learning based rules we adopted a
slightly different approach: we combine negative response predic-
tion and positive response prediction together to get predictions of
higher quality. For our email job recommendation use case, if the
job pushed to a user is relevant, the user may apply to the job. If
the job is not relevant, the user may ignore this recommendation or
reject it. In some cases, the user could even unsubscribe the service
after seeing the recommended job, this could be a strong indicator
of low quality recommendations. We log the user responses and
use them as progressively stronger negative signals to train our
models.

We build deep neural network models, including AutoInt [11],
DeepFM [6], Wide&Deep [3] and multi-task FwFM [10] to predict
users responses. When building these models, the features set we
used covers user information, job information and some context in-
formation. Both the categorical features and the numerical features
are converted to embedding vectors before they are fed to deep and
interaction components.
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Figure 2: Label encoding in AutoInt for ordinal regression.

Since we have 4 different types of user reactions (labels): unsub-
scribe, reject, no response and apply, we want to be able to use the
full information they carry when training the models. A straight-
forward approach is to use a multi-head structure and treat the
prediction of each type of user action as a separate tasks. However
this does not take the relation between these labels into considera-
tion. To address this problem, we combine the label encoding trick
in ordinal regression [4] with the deep models to capture the rela-
tion between all the labels. Taking AutoInt model as example, the
structure of the network is shown in Figure 2. The embedding and
interaction layers are largely unchanged except that in the output
layer we produce multiple binary outputs (e.g. 𝐶𝑖 , 𝑖 ∈ {𝑖, 2, 3} in
Figure 2). These binary outputs are used to encode all the labels.

In Table 1 we compare the offline performance of three different
model configurations: ordinal regression via label encoding, multi-
class classification, and binary classification, all implemented with
AutoInt model. The numbers reported are all relative to a baseline
DeepFM [6] model trained on binary label (reject and unsubscribe
as 1, 0 otherwise). It can be observed that the multi-class version
does not performwell, while the ordinal regression model is slightly
better than the model trained with binary labels.

After we train a model that performs well, we export it using
the Tensorflow SimpleSave API. We load the exported model into
our online systems and serve requests using the Tensorflow Java
API. Besides traditional classifier metrics such as AUC, precision,
and recall, we also load our model into our Offline Evaluation
Platform to validate the performance.

Model AUC Improvement
Ordinal regression + AutoInt 0.9%

Multi-class AutoInt -1.57%
Binary label AutoInt 0.3%

Table 1: Offline evaluation results, comparing with a base-
line DeepFM model.

5 PERFORMANCE EVALUATION
In this section, we present the performance evaluation results of
the two rules we have described above. The results are achieved
through online A/B testing with different applications as well as
offline evaluation with historic data through our Offline Evalua-
tion Platform. The applications we used for evaluation include
content-based recommendations (an application that recommends
jobs that are similar to the jobs the job seeker has clicked on and
applied), user-based recommendations (an application that recom-
mends jobs that other similar job seekers are interested in) and
email invite recommendations (an email application that identifies
would-be interested candidates for employers).

An Indeed proprietarymetric is used to evaluate our performance
by measuring the match quality of the job seeker and the given jobs,
which is defined as𝑀 in this work. Within Indeed, we sometimes
look at 𝑀 over seen events and 𝑀 over impression events when
evaluating matching quality of similar kinds.

From Table 2 we can see using Inferred Title Similarity rule alone
can improve the𝑀 over impression events by 11.61%, 11.48% and
4.3% for the three applications we show.

Application 𝑀/Impression Improvement
Content-based Recommendation 11.61%
User-based Recommendation 11.48%

Email Recommendation 4.3%
Table 2: Performance evaluation result by using the Inferred
Title Similarity filter rule alone.

Further, using Response Prediction rule alone on the Email invita-
tion application shows it can improve𝑀 over impression events by
11.35%,𝑀 over seen events by 18.74%, as shown in Table 3.

Finally, it is worth mentioning that the overall metrics improve-
ments using the Jobs Filter product are 24.57% and 39.29%, also
shown in Table 3.

Metrics Response Prediction Rule Jobs Filter
𝑀/Impression Improvement 24.57% 11.35%

𝑀/Seen Improvement 39.29% 18.74%
Table 3: Performance evaluation result by using the Re-
sponse Prediction Model rule for the Email invitation appli-
cation vs that by using the whole jobs filter product.

6 OPERATIONAL EXPERIENCE AND
LESSONS LEARNED

Rule-based engines work well in solving corner cases. It is especially
great at removing false negatives and false positives. However, the
number of rules can easily spiral out of control. A hybrid approach
of deep learning and a rule-based engine can effectively give us the
best of both worlds. Our design’s hierarchy of rules and machine
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learning technologies effectively solve this challenge and keep our
system working efficiently.

Another experience is the Offline Evaluation Platform can
be very powerful on identifying new rules and enhancing the ex-
isting rules to continue to improve overall effectiveness of the
jobs filter. Rules backtested by the Offline Evaluation Platform
barely needs online A/B tests when being launched, which hugely
decreased development cycle.

In the future, we are also planning to use multihead model to
predict all user responses together (multi-task learning). This should
lead to more robust feature representation, and can further improve
prediction performance.

Our system currently only gives a yes or no answer based on
the matching quality. In the near future, we are planning to expose
our matching quality as scores, so that the upstream applications
can have more flexibility on how to make decisions based on the
evaluation results.

7 CONCLUSIONS
Jobs Filter was born due to spiraling business applications to serve
job seekers of Indeed.com and in the meantime we want to maintain
a universal top user experience. We have applied our jobs filter in
several applications within Indeed, which significantly increases
user experience across the board. More specifically, it also works
especially well on the corner cases, in which cases many job seekers
actually used to complain about.

In this work, we have shared our engineering practice on building
such as production quality jobs filter and have described in detail
the system design and algorithms of two of the rules. We have
also shown our performance results to prove the effectiveness and
efficiency of the engineering achievements.
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