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ABSTRACT
Ads targeting aims to learn the relevance ranking among potential
audiences for each ad. It boosts advertising campaigns’ performance
by reaching prospective job seekers in time. In most existing online
advertising systems, the targeting rules of ad campaigns are set up
manually by either ad-ops or advertisers. This self-service scenarios
may be sub-optimal, especially when the ad-ops or the advertisers
are inexperienced.

This work puts forward and experiments a minimum viable
product in solving automatic audience targeting for sponsored jobs.
We build a knowledge graph embedding (KGE) of several entities,
which incorporates various features such as job seeker user profile
signals. We then leverage the KGE to map each ad campaign to
one or multiple targeting labels (a.k.a. segments). This KGE-based
multi-labeling approach reduces manual labeling errors, alleviates
the computational burden on relevance ranking, and supports the
subsequent task of audience expansion. This method demonstrates
its strength in improved recall and precision, in comparison with
the baseline methods in Indeed’s offline and online experiments.
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1 INTRODUCTION
Computational marketplaces, such as Indeed.com, CareerBuilder
and LinkedIn Inc., are dedicated to delivering relevant job posts to
potential job seekers [2]. Overall, targeting aims to extract inter-
pretable and useful features from three integral components in the
online marketplace: context, user (i.e., job seekers), and ad (i.e.,
job posts). Utilizing the current characteristics of users’ access be-
haviors, geo-targeting, channel targeting, and contextual targeting
are three essential techniques to construct context labels. Taking
users’ historical data into consideration, demographic targeting and
behavioral targeting are two fundamental strategies to construct
user labels. As for ad labeling, we may either perform manual
labeling or directly use the advertisers, ad groups, keywords as
labels, see [4, Chap. 12] for a comprehensive overview. Aside from
labeling these three components individually, there are techniques
to construct labels for user and ad jointly–as in re-targeting and
look-alike methods–by integrating the attributes from these two
aspects. This work puts forward a novel ads-labeling approach that
leverages knowledge graph embedding (KGE). We will use ads1 and
job posts interchangeably.

1.1 Literature Review
The granularity of ad-based audience targeting ranges from the
finest keywords to the coarsest job posts. There are primarily two
ways to mine the job posts.

(i) We can define a set of hand-crafted self-explanatory labels
(e.g., advertisers, ad groups, keywords) in advance, and then
map job posts to one or more labels in the established set
via supervised learning.

(ii) We can obtain a set of labels via unsupervised learning (e.g.,
clustering) while enforcing a hard threshold to the number
of labels. In such a way, we may obtain the mapping func-
tion from the job posts to the set of labels obtained from
unsupervised learning.

Choosing between (i) and (ii) depends on how ads labeling will
be utilized in the advertising system. If the ads labeling only serves

1It is possible that multiple jobs are attached to one ad. This paper discusses labeling
the jobs only.
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for feature extraction subsequently, then either supervised or unsu-
pervised learning paradigms are acceptable. However, if it serves
as a labeling system for the advertisers, then supervised learning
is preferred due to the interpretable labels that are conveniently
defined in advance.

For the latter approach (ii), we can tackle it via either multi-label
classification or supervised topic modeling, such as supervised
Latent Dirichlet Allocation (LDA) [1], hierarchically supervised
LDA [5], and othermethods reviewed in [3]. This work puts forward
a KGE-based approach to handle approach (ii).

1.2 Our Contribution
We propose a KGE-model-based procedure to map a job post to one
or multiple labels, along with its system design. This auto-targeting
back-end service has these functionalities and features:

• For every requested job post, it returns a list of labels. More
importantly, this service is capable of handling large-scale
traffic from clients.

• It uses Non-Metric Space Library (NMSLIB) to explore the ap-
proximate nearest neighbor (ANN) for relevant labels. Specif-
ically, it uses the cosine similarity metric to score the label
against a job.

• It mitigates the cold-start problem that arises for either new
jobs or new labels.

Benefits. The newly-proposed KGE-based multi-labeling for ad
posts avoids human labeling errors and supports the subsequent
task of audience expansion. It seamlessly bridges the gap between
targeted ads and search ads [4, Sect. 13.2], see further discussion
in Sect. 2.5. Besides, without manual labeling, our model-based
multi-labeling for job posts mitigates the computation burden on
relevance ranking, so that relevance ranking in later stages can
place more emphasis on precision over recall. Last but not least,
Algorithm 1 to appear can further incorporate various additional
features such as job seeker user profile signals.

2 MULTI-LABELING SERVICE (MLS)
This section explains the challenges and presents our approach of
multi-labeling service for job posts. Under the hood, MLS loads the
model trained offline based on ad features, including job metadata,
job title, job location, etc.

2.1 Challenge
To build an ad multi-labeling model, the greatest challenge comes
from the shortage of labeled data. Reconstructing the label(s) for
each job ad based on historical data may be demanding as one ad
could be mapped to multiple labels subjectively, and sometimes
may be misleading as the labels may be time-varying. Even if we
manage to recover the labels from the history, we will not be able
to support cold-start problems which arises when either new labels
or new jobs come in.

2.2 Our Approach
2.2.1 Normalization of Job Titles and Queries. Normalization is
the process for converting data–raw job titles “rawTitles” and
raw queries “rawQueries” in our discussion–that have more than
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Figure 1: Examples of rawTitles being normalized to
normTitle

one possible representation into one of a known set of normal
or canonical titles. These canonical titles and queries are called
normTitles and normQueries. The canonical title is the best job
title among a group of job titles that are synonyms. After you choose
a canonical title, all related raw titles will be normalized to that
canonical title, regardless of its original formatting and/or its extra
information. Figure 1 gives some examples of how raw job titles
are normalized to normalized job titles.

2.2.2 Constructing Labels via KGE. Given that we do not have
labeled data and do not plan to label the gigantic raw data, we
resort to KGE for rapid iteration and model refresh.

Knowledge graphs are collections of triplets, each triplet (ℎ𝑒𝑎𝑑,
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙) among which represents a 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 between a ℎ𝑒𝑎𝑑
entity and a 𝑡𝑎𝑖𝑙 entity. Specifically, we apply RotatE algorithm in-
troduced in [6], to obtain a KGE over the pre-selected relevant nodes
and relations. The nodes of the graph include the user id (userId),
the normalized query (normQuery), and the normalized job title
(normTitle). The two relations of our interest are “normQuery was
queried by userId” and “normTitle was applied by userId”.

With this trained KGE, we construct labels that embrace both
the normalized queries and the normalized job titles. In detail, from
a sub-graph in the knowledge graph training dataset, we start from
a ℎ𝑒𝑎𝑑 node that contains one user id (userId). After that, from the
corresponding 𝑡𝑎𝑖𝑙 node which contains either one normalized job
title (normTitle) or one normalized search query (normQuery), we
recursively locate more similar titles and queries by leveraging the
trained KGE. Note that the recursion goes on until the similarity
score reaches a fixed threshold. After several repetitions of both
auto and manual quality checks, the resulting labels can be stored in
a database with other machine-generated or human-selected labels.
This approach of ads-labeling is best suitable for user-targeting by
real-time monitoring if one user should be targeted based on his
recent queries, clicked titles, and resume titles. We will cover the
details more in Sect. 2.5.

For illustration, Fig. 2 includes a snippet of one label (HR) ob-
tained through the aforementioned KGE. The fields clickedTitle
and resumeTitle come from the normalized job title embedding,
while the field recentQuery uses the normalized query embedding.
The remaining machine-generated labels can be extracted from the
KGE similarly. Note that these machine-generated labels may be
harder to interpret compared to the hand-crafted labels by ad-ops or
advertisers. Here we use embeddings built on the following entities:

https://dglke.dgl.ai/doc/kg.html#modeling-relations-as-rotation
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• resumeTitle is the normalized titles appearing in the job
seeker’s resume and represents his past experience.

• clickedTitle is the normalized titles that the job seeker
recently clicked and reflects his/her desired future career
title

• recentQuery is the normalized search queries that the job
seeker input and encodes his current interests.

With these background information in mind, the example label
in Fig. 2 is “human resources based on their recent resume title
similarity and search query similarity”.
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Figure 2: One Example Label (HR) Obtained via KGE

Last but not least, the foregoing time-varyingness problem in
Sect. 2.1 can be partially addressed if this KGE model gets refreshed
periodically.

2.2.3 Retrieving Labels via MLS. Sect. 2.2.2 explains how we recur-
sively obtain labels using the KGE built from the normalized titles
and normalized queries. The set of KGE-based labels then serves
as the core component of MLS, since these labels are composed
of normalized titles and normalized queries. Besides, each job has
other metadata other than the normalized job title.

MLS consumes the labels definition database periodically and
performs mean-pooling (taking the mean of the individual embed-
ding) over the item embedding of each section into three vectors.
Note that the missing terms are omitted. Afterwards, we index the
corresponding three vectors with an id by library NMSLIB. This
step can be viewed as 𝑘-nearest-neighbor (𝑘-NN) with 𝑘 = 1. Cur-
rently, the approximate nearest neighbor (ANN) search is applied
in Indeed’s current production. The output is three indices under
these names appearing in Fig. 2: clickedTitle, resumeTitle, and
relevantQuery. Note that the first two fields use normalized title
embedding and the last uses the query embedding.

When one single job is input into MLS, we call the indices to
obtain three lists of scores, in order to generate its corresponding

multi-labeling lists. Under the hood, each prediction method calls
the indices to get three lists of scores. Precisely, the normalized
title embedding of job title calls the indices clickedTitle and
resumeTitle. Meanwhile, the query embedding of job title (view-
ing job title as a query) calls the index recentQuery. A list of labels
is subsequently returned to the client after integrating the three
lists of scores. See Algorithm. 1 for a summary.

Algorithm 1 KGE-based Multi-Labeling Service
Require: metadata of a single job, including rawTitle,

normTitle, jobType, category, companyInfo, and etc.
Ensure: a list of recommended labels for the input job

initialize label list 𝑙𝑖𝑠𝑡 and target title 𝑡𝑖𝑡𝑙𝑒
if normTitle of input job is empty then

set 𝑡𝑖𝑡𝑙𝑒 to be the most plausible normTitle from the set of
all the normTitle by comparing with rawTitle based on fuzzy
string matching
end if
if target title 𝑡 is empty then

set 𝑡 by calling fall-back solution in Sect. 2.3.1 with trans-
former model
end if
for (clickedTitle index, resumeTitle index, recentQuery in-
dex) do

if 𝑠𝑐𝑜𝑟𝑒 is larger than a threshold then
if 𝑙𝑎𝑏𝑒𝑙 not in 𝑙𝑖𝑠𝑡 then

append the matched labels by label name and similar-
ity score pair (𝑙𝑎𝑏𝑒𝑙, 𝑠𝑐𝑜𝑟𝑒) to 𝑙𝑖𝑠𝑡

else
add 𝑠𝑐𝑜𝑟𝑒 to the existing 𝑙𝑎𝑏𝑒𝑙 in 𝑙𝑖𝑠𝑡

end if
end if

end for
sort 𝑙𝑖𝑠𝑡 by 𝑠𝑐𝑜𝑟𝑒 descendingly

2.3 Fall-Back Solution
2.3.1 Missing Normalized Job Titles. One caveat for Sect. 2.2 arises
in the edge case when the incoming job has no normalized job
title. Note that the trained KGE is static (though it gets refreshed
periodically), and the set of embedded terms cannot comprehen-
sively cover all the upcoming terms. For example, we encountered
“tattoo artist” and “tattoo shop” before any tattoo-related terms are
incorporated into the pre-trained embeddings. To better manage
the unseen cases, we can utilize Transformer [7] to generate word
embeddings as a fall-back solution.

Note that we need the sentence and token embeddings to run
ANN in NMSLIB. To enable mapping normalized titles and queries
into fixed-length representations, we resort to the sentence trans-
former that utilizes BERT /RoBERTa/DistilBERT /ALBERT /XLNet in
PyTorch.

To streamline the model, we pick DistilBERT whose number of
hidden units is 768. Besides, we reduce the dimension down to
200 by adding a dense layer after the pooling. In short, DistilBERT
is selected ultimately, since we need a lighter model than other
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Transformer models and less dimension to index in order to balance
online serving response time and model performance.

Following this route, we can embed the normalized titles and
queries into fixed-length vectors and then index all of these vec-
tors. In detail, to support this fall-back solution with ANN search,
three more similar but different source-data indices (clickedTitle,
resumeTitle, recentQuery) are prepared, in addition to the KGE-
based ones in Sect. 2.2.3. For incoming job requests with its own
normalized title or raw title, the 200 dimension word embedding
will be generated by the same DistilBERT model with the dense
layer before calling these indices to retrieve labels.

2.3.2 Broad Terms. Another tricky scenario arises when the de-
sired normalized job titles and/or search queries are abnormally
broad. Take “technician” as an example. After the embedding train-
ing, this label is associated with the following titles and queries.

• clickedTitles: "hvac", "electrician", "field technician", "main-
tenance professional", "mechanic", "technician", "machine op-
erator", "service technician", "maintenance technician", "hvac
technician", "installer", "construction", "hvac tech", "mainte-
nance"

• appliedTitles: "hvac", "electrician", "field technician", "main-
tenance professional", "mechanic", "machine operator", "ser-
vice technician", "maintenance technician", "hvac technician",
"installer", "construction", "hvac tech", "maintenance"

• relevantQueries: "hvac", "electrician", "mechanic", "electri-
cal", "technician", "service technician", "maintenance tech-
nician", "hvac technician", "building maintenance", "installa-
tion", "manufacturing", "construction", "apartment mainte-
nance", "hvac tech", "automotive", "maintenance"

Because of these broad terms, another fall-back solution is to use
RapidFuzz2 with a matching score of 95–somewhat higher than the
recommended score of 85–to ensure delivering relevant job posts
to job seekers.

2.4 Other Relevant Components
In between clients (who send in multi-labeling request) and MLS,
we also built a service that automatically selects labels for any
incoming job called Label Selector Service (LSS). In short, the client
input/send a list of jobs, and then LSS output/return a list of labels
for each job. Note that it is the very component that bridges the
gap between search ads and targeted ads.

LSSAPIClient(s)

Local Cache

MLS

MongoDB

KGE Training

DocService

Cache Miss

Cache & DB Miss

Re
tr
ie
ve

M
et
aD

at
a

Figure 3: Architecture for Label Selector Service and Multi-
Labeling Service. Solid/Dotted lines mean online/offline com-
munications.

2RapidFuzz is a Python library that is used for string matching.

LSS starts by loading labeling data, which is written by MLS, into
the cache from MongoDB. Afterward, LSS maintains a background
thread/process that listens to MongoDB change stream and then
updates the cache whenever data in MongoDB changes. When LSS
receives a request from the client, LSS searches the correct labels
in the cache to return to the client. In case of cache miss, LSS has
to retrieve job metadata from DocService, call MLS to get the list
of labels, and write the data to the local cache. Last but not least,
an offline batch job can be set up to update the cache.

2.5 Auto-Targeting Pipeline
Other than categorizing targeting methods by the feature extraction
sources (context, user, and ad) as in Sect. 1, targeting can also
be categorized into explicit targeting (a.k.a. manual targeting) and
implicit targeting (a.k.a. automatic targeting). Automatic (implicit)
targeting refers to the scenario where targeting criteria are set up
automatically for advertisers or ad-ops after campaign creation.
Now that the KGE incorporates job titles, queries, and other in-
formation, and can be used as meaningful labels (e.g. Fig. 2), the
MLS enables the fully automatic job ad targeting, as ad-ops and/or
advertisers do not need to manually pick targeting labels (segments)
in advance.

Now that Sect. 2.2 lays out MLS that obtains KGE-based labels,
we can outline an ads auto-targeting pipeline in Figure 4. The
optional block “audience expansion” usually facilitates expanding
ads reach beyond the MLS. The automatic targeting pipeline such as
Fig. 4 provides convenience when the advertiser is uncertain of its
targeting audience. It allows for a scalable system handling a large
number of ads and reduces human errors in tons of operational
manipulations entailed in manual targeting.

ML-based Audience Understanding LSS Audience Expansion

Figure 4: Automatic targeting may extract information from
context (e.g., geo-targeting, channel targeting, contextual
targeting), user (e.g., demographic targeting, behavioral tar-
geting), and ad (e.g., MLS).

For the usermatching side, the key fields (recentQuery, resumeTitle,
and clickedTitle in Fig. 2) in the targeting labels are used to clas-
sify users into pre-selected segmentation. This task can be done
either via a separate online service or an offline batch job. Besides,
LSS can link jobs and labels as we proposed above. These two
components comprise the auto-targeting pipeline.

Note that the auto-targeting pipeline in Fig. 4 does not entail
manual labeling, this KGE-model-based multi-labeling for job posts
mitigates the computation burden on ranking, which performs user
response prediction by taking ads quality, contextual information,
and bidding into account. Thanks to MLS and LSS, ranking in later
stages can place more emphasis on precision over recall and the
ads ecosystem in Fig. 5 gets healthier.

3 NUMERICAL EXPERIMENT
This section presents the performance of Fig. 3 inside Indeed.

Datasets. The dataset of our interest is around 588 million job
posts, 539 million of which have normalized job titles. There are

www.indeed.com
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Figure 5: Ads targeting with LSS alleviates computational
burden in ranking.

around 7 thousand normalized job titles. Note that nearly 19 million
job posts do not have corresponding normalized titles, so the fall-
back solution in Sect. 2.3 experiments here.

Baseline and Implementation. To compare against the newly-
proposed KGE-based method in Sect. 2, RapidFuzz is applied to
label ad using normTitle only. We follow these criteria to return a
list of matching labels for a requested job with normalized title and
metadata.

• We set the score threshold in RapidFuzz to be 85 (recom-
mended score) to increase ad reaching down the stream.

• For each normTitle, the labels with the highest matching
score will be assigned, with a total cap of 6 labels.

Recall Improvement. Compared to the aforementioned baseline,
the work discussed in 2 brings up both the recall on job and the
recall on normalized norm title, see Table 1.

Recall on Job Recall on Title
RapidFuzz 86.83% 79.26%

KGE-based method 89.82% 81.64%
Table 1: Performance lift of Algorithm 1 compared with base-
line: 3% lift on job recall and 2.4% lift on title recall.

Accuracy Improvement. Other than recall improvement on these
unlabeled 588 million job posts, we also witness an accuracy lift
from 60.97% to 74.79% on 246 normalized titles with human/manual
labeling–a decent 13.82% lift on accuracy.

4 CONCLUDING REMARK
We put forward and experiment a minimum viable product (MVP)
for an auto-targeting system, whose benefits are summarized in
Sect. 1.2. Subsequent versions can be developed with several im-
provements.

• Currently, the set of labels is obtained through the embed-
ding that utilizes normTitle and normQuery history. How-
ever, there exist some human-labels (labeling manually) that
leverage further aspects, such as resume information (in-
cluding recentTitles and graduationDate) and company

information (including recentCompanies). Enriching our
KGE is anticipated to facilitate profile customization for each
company and other prospective objectives.

• For the moment, this service is limited to an “OR” operation
of labels. Namely, Fig. 3 is capable of returning a list of
labels for each requested job. We can extend this service
to additional logical operations such as “AND”, “NOT”, and
potentially nested operations, as discussed in [3].

• Although this work puts forward a complete model-based
pipeline to label ads without human intervention, a supple-
mentary matching and ranking layer may serve our entire
computational advertisement better for simultaneously la-
beling both ad and user for relevance and reach purposes.
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