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Graph convolutional networks (GCNs) are very powerful in learning graph-structured data by integrating features from node and its
local neighborhood. GCN-based methods can encode features of nodes (items) together with the collaborative signals of user-item
interactions to learn the embedding. However, it suffers from cold-start problem as the collaborative signals would be missing for any
new nodes. We propose a novel weighted GCN-based representation framework for recommender systems by constructing content
and behavioral data into a double connected and weighted hyper-network. Empirical studies on job recommendation scenario shows
the effectiveness of our method in representing all nodes in the graph and eliminating the cold-start problem.
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1 INTRODUCTION

Personalised recommender systems have become a crucial component in any online services including e-commerce and
job marketplace. The complex relation between users, items and their interactions in online services can be essentially
captured in a graph structure. There has been growing interests in leveraging this inherent graph structure for high-level
representation of users and items, and applying it to downstream applications such as recommendation.

Several studies have been done to model and train graph-structured data. Recently, Graph Convolutional Networks
(GCNs) [2, 4, 5] have gained increasing attentions and have been shown to be very powerful in representation learning.
The original GCN algorithm [4] is designed in a transductive setting and [5] requires known full graph Laplacian.
The extended GCN framework GraphSage [5] is in an inductive setting to learn the embedding function which can
be generalized to unseen nodes and subgraphs. Here, we further extend GraphSage to a weighted inductive model to
mostly reduce the impact of noises contained in the graph structure.

In recommendation applications, GCNs provide powerful and systematic tools to explore multi-hop relationships on
the graph-structure data incorporating abundant data sources. The abilities to explicitly encode the crucial collaborative
signal (i.e. user-item interactions) is one of the biggest reasons for the remarkable success of GCNs in recommender
systems. However, if the interaction data is simply represented by a bipartite graph between user and item nodes
only [1, 7], cold-start problem becomes crucial limitation since the association between items to users would be missing
for new items. In this research, we first propose a novel double connected and weighted graph structure to encode the
content-based data sources and collaborative signals, then apply our weighted GCNs over the customized graph for a
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unified perspective to sufficiently benefit from GCNs and eliminate cold-start problem. We validate the effectiveness of
our method (referred to Double Weighted GCN, DWGCN for short) on real-world data for job recommendation.

2 METHODOLOGIES

2.1 Model Description

2.1.1 Behavioral and Content based networks. Let 𝐺𝐼𝐹 = (𝑉𝐼 ∪𝑉𝐹 , 𝐸𝑐 ) be a bipartite content-based network with two
separate parts 𝑉𝐼 and 𝑉𝐹 where 𝑉𝐼 is the set of all items, 𝑉𝐹 is the set of all considered filters on items, and 𝐸𝑐 is the set
of pairs (𝑖, 𝑓 ) such that the item 𝑖 ∈ 𝑉𝐼 satisfies the filter condition 𝑓 ∈ 𝑉𝐹 . Clearly, while there is a new item, we can
easily add it to the network𝐺𝐼𝐹 . We also consider the engagement network𝐺𝐼𝑈 = (𝑉𝐼 ∪𝑉𝑈 , 𝐸𝑢 ) where 𝑉𝑈 is the set of
all users and 𝐸𝑢 is the set of pairs (𝑖, 𝑢) such that user 𝑢 has some interactions with the item 𝑖 . Various filters on the
contextual information can be defined to characterize item nodes for reducing the impacts of noises due to different
writing and formatting difference. And the filters can be over item nodes (e.g. education level, skills requested) or node
pairs (e.g. distance<15 miles). Since 𝐺𝐼𝐹 is bipartite, it identifies a unique multigraph with vertex set 𝑉𝐼 , edge set 𝐸𝐼
such that 𝑖1𝑖2 ∈ 𝐸𝐼 if and only if items 𝑖1 and 𝑖2 satisfy some common filter, and multiplicity function 𝜇 : 𝐸𝐼 → N such
that 𝜇 (𝑖1, 𝑖2) is the number of common filters satisfied by items 𝑖1 and 𝑖2 (see Figure 1a). We denote this multigraph
by 𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 , 𝜇). Similarly, the bipartite graph 𝐺𝐼𝑈 also identifies one unique multigraph 𝐺 ′

𝐼
= (𝑉𝐼 , 𝐸 ′𝐼 , 𝜇

′) where
𝜇 ′ : 𝐸 ′

𝐼
→ N such that 𝜇 ′(𝑖1, 𝑖2) is the number of common user-item interactions of 𝑖1 and 𝑖2. Finally, we get a behavioral

and content based multigraph defined by a 5-tuple 𝐺 = (𝑉𝐼 , 𝐸𝐼 , 𝐸 ′𝐼 , 𝜇, 𝜇
′) (see Figure 1b).

(a) Content based H-network (b)Double connected andweighted
Fig. 1. Illustration on (a)content based H-network, and (b) double connected and weighted H-network based on content (red) and
behavioral (green) connections.

2.1.2 Weighted H-network. To allow the importance of filters and user-item interactions, we could further define a
weighted H-network. Over the multigraph𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 , 𝜇), let 𝐹 : 𝐸𝐼 → F be the filter mapping such that 𝐹 (𝑖1𝑖2) is the
set of common passed filters by 𝑖1 and 𝑖2 where F is the family of considered filters on items, and define the weight
function 𝜔F : 𝐸𝐼 → R such that 𝜔F (𝑖1𝑖2) =

∑
𝑓 ∈𝐹 (𝑖1𝑖2) 𝜔 𝑓 where 𝜔 𝑓 is the weight for filter 𝑓 . Note that if 𝜔 𝑓 = 1 for

any 𝑓 ∈ F , then 𝜔F is equal to the multiplicity 𝜇. Similarly, over the multigraph 𝐺 ′
𝐼
= (𝑉𝐼 , 𝐸 ′𝐼 , 𝜇

′), let C be the family
of interactions of users on items (eg. click, application) and 𝜇C = {𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑖𝑡𝑦 𝜇𝑐 : 𝑐 ∈ C} be the multiplicity family
where 𝜇𝑐 : 𝐸 ′𝐼 → N such that 𝜇𝑐 (𝑖1𝑖2) is the number of common user-item interactions 𝑐 between 𝑖1 and 𝑖2. Define the
weight function 𝜔 : 𝐸 ′

𝐼
→ R with 𝜔 (𝑖1𝑖2) =

∑
𝑐∈F 𝜔𝑐𝜇𝑐 where 𝜔𝑐 is the weight for interaction 𝑐 . Finally, we get two

weighted multigraphs 𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 , 𝐹 , 𝜔F) and 𝐺 ′𝐼 = (𝑉𝐼 , 𝐸
′
𝐼
, 𝜇C, 𝜔C) for the weighted H-network.

2.1.3 Sparse weighted H-network. In the item-filter network, we identify the connections between items in 𝐺𝐼 in
different aspects. We expect the connection to be strong enough to show the similarity of items. While |𝑉𝐹 | << |𝑉𝐼 |
in 𝐺𝐼𝐹 , the graph 𝐺𝐼 will be very dense. To sparse the graph, we can define a hard filter family Fℎ to remove weak
connections. For example, we can set thresholds 𝜏𝑓 , then modify the graph 𝐺𝐼 by removing connections between two
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items with less than 𝜏𝑓 common filters. The hard filters can be also defined according to some business logic. For
example, we could only consider the items with distance less than a predefined threshold 𝜏𝑙 .

2.1.4 Neighbor importance selection. GCNs are neighborhood aggregation schemes, but the size of node neighborhoods
is irregular in the H-network. In order to keep the computational footprint in the training, we convolve on node over its
selected neighborhood of fixed size. Moreover, in the H-network, both 𝜔F and 𝜔C measure the strength of connections.
The stronger the connection is, the more reliable the neighbor information is going to be. However, we note that 𝜔C
would be missing for new items. To avoid cold-start problem, we only use 𝜔F in the GCNs to weight the importance of
neighbors. Thus, we define a neighbor importance selection function N∗ : 𝑉 𝐼 × N→ 𝑉 𝐼 to generate the neighborhood
for nodes such that N∗ (𝑣, 𝑘) is a set of neighbors of node 𝑣 with size 𝑘 which are randomly selected by weights 𝜔F .
Note that, we only select neighbors related to edges in 𝐸𝐼 . For notation simplicity, let N (𝑘)𝑣 be the selected 𝑘-hop
neighborhood of node 𝑣 and N𝑣 be the whole neighborhood defined by the filter edge set 𝐸𝐼 . Given neighborhood sizes
𝑘 , if |N𝑣 | < 𝑘 , then the neighbors of 𝑣 are sampled with replacement inN∗ (𝑣, 𝑘). More details are shown in Algorithm 1.

Algorithm 1 Neighborhood importance selection on node 𝑢
1: Input: Node 𝑢, filter edge set 𝐸𝐼 , filter weight function 𝜔F , depth 𝐾 , neighborhood sizes 𝑠𝑘 for 𝑘 = 1, 2, · · · , 𝐾 .
2: Initialization: N (0)𝑢 := {𝑢} and N (𝑘)𝑢 := ∅ for 𝑘 = 1, 2, · · · , 𝐾 .
3: for 𝑘 = 1, · · · , 𝐾 do
4: for 𝑣 ∈ N (𝑘−1)𝑢 do
5: 𝑁 ← Randomly selected 𝑠𝑘 neighbors from N𝑣 := {𝑤 : 𝑣𝑤 ∈ 𝐸𝐼 } by weights {𝜔F (𝑣𝑤) : 𝑤 ∈ N𝑣} with

replacement if |N𝑣 | < 𝑠𝑘 , and without replacement otherwise.
6: N (𝑘)𝑢 ← N (𝑘)𝑢 ∪ 𝑁
7: end for
8: end for
9: Output: 𝑘-hoop neighborhood N (𝑘)𝑢 for 𝑘 = 1, 2, · · · , 𝐾 .

2.1.5 Model Architecture. As GCNs, the core of DWGCN algorithm is also to use the localized convolutional modules
to generate embeddings for nodes. It starts with node features and its localized graph structures in the H-network, and
then learn the weighted GCNs that transform and aggregate features of the node neighborhood. Any node features
available as text could be transformed to numerical vectors by some general or pre-trained text to vector embedding
models, and combined with other numeric features. Let 𝑐𝑢 be the current embedding for node 𝑢 ∈ 𝑉𝐼 , then the task is to
generate a new embedding 𝑛𝑢 to optimally represent the node’s features. This procedure is detailed in Algorithm 2.

2.2 Model Training

2.2.1 Weighted Energy-based Loss Function. We train the DWGCN in a fully unsupervised manner which assumes that
two connected nodes in the H-network have more similar representations compared to disconnected or less weighted
node pairs. Note that, different from the step for neighborhood sampling which only considers filtering edges in 𝐸𝐼 ,
the customer behavioral edge set 𝐸 ′

𝐼
is also considered here. Since the user-item interaction information is only used

to train the model on the reliable connections in the backward step, the algorithm is designed for applications which
fully overcome the cold-start problem. Define the weight 𝜔𝑢1𝑢2 := 0.5 ∗

(
𝜔F (𝑢1𝑢2) + 𝜔C (𝑢1𝑢2)

)
for 𝑢1𝑢2 ∈ 𝐸𝐼 ∪ 𝐸 ′𝐼 , and

𝜔𝑢1𝑢2 := 0 otherwise. For an edge 𝑢𝑣 ∈ 𝐸𝐼 ∪ 𝐸 ′𝐼 , consider the weighted loss function for their node embeddings 𝑛𝑢 , 𝑛𝑣

L(𝑛𝑢 , 𝑛𝑣) = −𝜔𝑢𝑣 log
(
𝜎 (𝑛𝑢 · 𝑛𝑣)

)
− 𝑁 ∗ E𝑤∼𝑃𝑢 (1 − 𝜔𝑢𝑤) log

(
𝜎 (−𝑛𝑢 · 𝑛𝑤)

)
where 𝑃𝑢 denotes the distribution of negative samples for item 𝑢, 𝑁 is the number of negative samples, and 𝜎 (·) is the
sigmoid function. It introduces weights on the cost of missing a positive or negative sample.
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Algorithm 2 Node neighborhood aggregator on node 𝑢

1: Input: H-network 𝐺 = (𝑉𝐼 , 𝐸𝐼 ∪ 𝐸 ′𝐼 , 𝜔F, 𝜔C), current embedding set {𝑐𝑣 : 𝑣 ∈ 𝑉𝐼 }, activation function 𝜎 (·), depth
𝐾 , 𝑘-hoop neighborhood N (𝑘)𝑢 ,weightsW(k) , biases b(𝑘) , aggregator functions 𝑔 (𝑘) for 𝑘 = 1, 2, · · · , 𝐾 .

2: Initialization: ℎ (𝐾)𝑣 := 𝑐𝑣 for 𝑣 ∈ N (𝐾)𝑢 and N (0)𝑢 := {𝑢}.
3: for 𝑘 = 𝐾, · · · , 1 do
4: for 𝑧 ∈ N (𝑘−1)𝑢 do
5: Convolve over neighborhood: ℎ (𝑘−1)𝑧 ← 𝑔 (𝑘)

(
{ℎ (𝑘)𝑣 : ∀𝑣 ∈ N𝑧 ∩ N (𝑘)𝑢 }

)
6: Convolve with self-embedding: ℎ (𝑘−1)𝑧 ← 𝜎

(
W(𝑘) ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ (𝑘−1)𝑧 , 𝑐𝑧) + b(𝑘)

)
.

7: Normalization: ℎ (𝑘−1)𝑧 ← ℎ
(𝑘−1)
𝑧 /| |ℎ (𝑘−1)𝑧 | |2.

8: end for
9: end for
10: Output: New embedding 𝑛𝑢 := ℎ (0)𝑢 for node 𝑢.

2.2.2 Strategy on negative sampling. To enforce the model to learn the parameters to capture the difference between
strong and weak connections, instead of uniformly sampling negative instances from the entire set of nodes, we consider
the connections with small weights as the hard negative samples.

3 EXPERIMENTS

We test and evaluate the generated embeddings on a sample dataset from a real job marketplace for job recommendation
task. The goal is to find the closest jobs (for example, top 100) in the embedding space to the most recently applied
job (source job) to recommend to the user. To test our approach in this domain, we first construct the H-network
𝐺 = (𝑉𝐼 , 𝐸𝐼 ∪ 𝐸 ′𝐼 , 𝜔F, 𝜔C) following Algorithm ??. Let 𝑉𝐼 be the set of active jobs. To simplify the evaluation, we
considered only the jobs covered by enough co-apps i.,e co-apps≥ 20. The "apply" behavior is considered in C and filters
related to job titles, categories, skills, location, etc. are considered for F . More specifically, if a user 𝑢 applied to both
the jobs 𝑗1 and 𝑗2, then 𝑗1 𝑗2 ∈ 𝐸 ′𝐼 and its weight 𝜔C ( 𝑗1 𝑗2) is measured by the no. of co-applications (co-apps). On the
other hand, we define connections 𝑗1 𝑗2 ∈ 𝐸𝐼 if jobs 𝑗1, 𝑗2 have the same job title, or normalized job title [6], or common
skills [3], or sim-score ≥ 0.9, where the sim-score is the cosine similarity score using the content-based embeddings by
DLEM [8]. The weight function𝜔F is defined by an aggregated score on filter scores and distance, where the parameters
are decided by the parameter tuning. We normalize both 𝜔F and 𝜔C , then use 𝜔F (𝑢𝑣) + 𝜔C (𝑢𝑣) < 1 for 𝑢𝑣 ∈ 𝐸𝐼 ∪ 𝐸 ′𝐼
as hard filters to filter out weak connections. The job set 𝑉𝐼 is split into training (jobs posted over a week), and testing
(jobs posted in the next 3 days after the week). For testing, we consider all the test jobs as new and do not have any
interaction signal. Overall we use 615,000 pairs of positive training examples and 20 negative examples per node.

We compare the performance of DWGCN with DLEM [8] which is the content-based method to embed job title,
description, and skills. DLEM combines 150-dimensional job embeddings with 3-dimensional Cartensian coordinates
transformed from the spherical coordinates (latitude and longitude). Furthermore, we conduct ablation studies and
consider several variants of aggregator functions defined in [2] for DWGCN: Mean, Meanpool and GCN. For all these
variants, we set the depth 𝐾 = 2, sample sizes 𝑠1 = 25, 𝑠2 = 10, and the hidden and output dimensions to be both 128.

Table 1 shows the results of the head-to-head comparison between DWGCN compiled with three different aggregator
functions and the baseline DLEM [8]. For a source job, a method wins over the other if the overlap between the
recommended jobs and the expected top jobs (based on the co-app) is higher. Results show that the embeddings
generated by DWGCN outperformed DLEM in finding the most relevant jobs to recommend to the users. Figure 2
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illustrates the t-distributed stochastic neighbor embedding (t-SNE) plots of test sample jobs’ embeddings obtained from
DWGCN-GCN colored with the job categories. This shows that our approach is also effective in capturing the content
information of jobs as the job cohorts with different colors are clearly clustered in different regions.

Methods Win Lose Draw

DWGCN-Mean 54.64% 29.96% 15.40%
DWGCN-Meanpool 48.80% 35.51% 15.68%
DWGCN-GCN 61.49% 15.77% 22.75%

Table 1. Head-to-head comparison with DLEM for source
to recommended jobs based on co-apps

Fig. 2. t-SNE plot of job embedding vectors from DWGCN-GCN
which are color-labeled by job categories and annotated with
normalized job titles

4 CONCLUSION AND FUTUREWORK

We proposed a weighted GCN-based approach to encode item features and user-item interaction information into the
graph structure to represent items. The new embeddings are able to capture content features of items, as well as the
behavioral information of users on the related items. Moreover, it can fully overcome cold-start problem. In this work,
we only discussed the representation learning for items, but the framework can be easily extended to representation
learning on users, or on users and items in the shared space. We are going to to evaluate the performance of our model
with A/B experiments and compare with other state-of-art methods.
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