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Abstract

In this paper, we describe the migration of a homebrewed
C++ search engine to OpenSearch, aimed at preserving and
improving search performance with minimal impact on busi-
ness metrics. To facilitate the migration, we froze our job cor-
pus and executed queries in low inventory locations to cap-
ture a representative mixture of high- and low-quality search
results. These query-job pairs were labeled by crowd-sourced
annotators using a custom rubric designed to reflect relevance
and user satisfaction. Leveraging Bayesian optimization, we
fine-tuned a new retrieval algorithm on OpenSearch, repli-
cating key components of the original engine’s logic while
introducing new functionality where necessary. Through ex-
tensive online testing, we demonstrated that the new system
performed on par with the original, showing improvements in
specific engagement metrics, with negligible effects on rev-
enue.

1 Introduction
Job search is integral to everyone’s journey of finding a new
job. What was once a simple act of peering up and down
the classified section containing only 10s of jobs in a news-
paper is now a complex act of discovering your next role
by sifting out 10s of millions of jobs in a search engine. In
2014, ZipRecruiter entered into the job search scene with a
C++ based search engine that though admirably served its
purpose, has since become outdated. Over the past 10 years,
search engine technology has rapidly evolved with the rise of
artificial intelligence and vector search taking up the lion’s
share of the advancement with open-source search engines
leading the charge. That, coupled with our C++ search en-
gine growing into a monolith, led us to make the decision
to migrate to OpenSearch, an open-source fork of Elastic-
Search maintained by AWS.

The C++ search engine’s lexical relevance function was
not directly portable to OpenSearch due to the structure of
its query DSL, requiring significant work to create a new
relevance function that adhered to OpenSearch’s constraints.
Though we were able to take inspiration from the old rele-
vance function, this inability to directly port it over required
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us to create a new functional form for our relevance func-
tion and smartly tune field-boosts. Our new relevance func-
tion not only matched the performance of the C++ search
engine’s relevance function, it exceeded the C++ search en-
gine’s relevance function on all key metrics.

2 Methodology
There are two key facets of our relevance function. The first
is the functional form, or the overall structure that a) deter-
mines what fields from each job are used for retrieval and
ranking and b) how BM25 scores (Robertson and Zaragoza
2009) from different fields are utilized and combined to de-
termine the overall score of a job. The second is the field
boosts that are used to weight how much we care about
query token matches in each field of a job by scaling up
or down the BM25 score of a field match for a query token.
Though these two factors can be tweaked independently, we
achieved the most success when modifying them in tandem.

Crafting the functional form of the relevance function and
finding the optimal field boost values took up a significant
amount of time. At a high level, here’s how we accomplished
that:

1. Create definitions of search relevance grades to represent
the degree of relevance for a query and a job.

2. Create a labeled data set D of (query-job-relevance label)
triplets

3. Create a functional form of a relevance function inspired
by our C++ relevance function

4. Use D to evaluate the functional form and tune
OpenSearch Query DSL boosts and other hyperparam-
eters in the relevance function

2.1 The C++ Search Engine’s Relevance Function
The meticulously crafted and tuned relevance function from
our C++ search engine was TF-IDF based (Roul, Devanand,
and Sahay 2014) with a semantic scoring element. Given a
job search query, the relevance function outputs a score from
0-1 that seeks to capture how relevant (see Section 1.2) a job
is to a query. At its core, a job on ZipRecruiter contains a
title, description, and company name. For each job, the C++
search engine processed these raw fields using rewrite and
stemming/lemmatization rules (analyzer rules), generating



new fields. It applied the same analyzer rules to the query,
using both as inputs for the relevance function:

rel score = f(analyzed query, analyzed doc fields)

This rel score score, combined with other factors such as
how close a job is to a job seeker’s search location (geo)
along with how newly posted a job is (freshness) ultimately
determines whether or not it will be retrieved by our search
engine and its ranking position. However, we will not focus
on geo and freshness in this paper, as we were able to di-
rectly port over those factors to the new relevance function.

2.2 Defining Relevance
At ZipRecruiter, our mission is to actively connect job seek-
ers to their next great opportunity. Thus, we define query-job
relevance as “how likely would a job seeker who searches
for this query be to apply to this job?”. It’s worth mention-
ing that to completely capture how likely someone is to ap-
ply to a job, we would need to know their preferences on
salary, location, how new a job is, etc. These factors we
refer to as user relevance. On the other hand, topical rele-
vance contains factors such as how well the query’s intent
matches the responsibilities, requirements, and skills of a
job. Since we could directly port over our scaling factors
for user relevance from our C++ search engine’s relevance
function, in this migration we were only concerned with as-
sessing topical relevance. Moving forward, when we refer
to “relevance”, we’re really referring to topical relevance.
To measure the relevance of a query-job pair, we defined
five grades of relevance as shown in Table 1. Human label-
ers were prompted with specific instructions to ignore user
relevance and were tasked with labeling tens of thousands
query-job pairs according to the below relevance definitions.
These relevance labels were the keystone for creating our
new relevance function, as discussed in detail in Section 3.

Grade Description

0 This is far from what I’m looking for. There’s
no way I would apply—extremely irrele-
vant.

1 This job doesn’t align well with my search
query. There’s a very small chance I would
apply—irrelevant.

2 I can see why I got this result. I might apply
to it —somewhat relevant.

3 This job isn’t the best match, but still a good
one. I would apply to it —relevant.

4 This job is a perfect match. I would put in a
lot of effort to apply to this job—extremely
relevant.

Table 1: Job Relevance Grades

When working with metrics that required labels to be bi-
narized as either relevant or irrelevant, we set our relevance
threshold at 3 such that any job with a relevance label greater

than or equal to that threshold was deemed relevant and ir-
relevant otherwise.

2.3 Collecting Relevance Labels
To obtain our dataset D of query-job relevance labels, we
first generated a candidate set of query-location pairs using
a set of heuristics described below. Next, we ran searches
using the C++ search engine against a static snapshot of
our search index to generate result sets containing query-job
pairs. We then sent those query-job pairs to human labelers
to obtain graded relevance labels. Our goal was to create a
balanced dataset of relevant and irrelevant jobs so that 1) our
new relevance function could learn to identify what makes a
job relevant or irrelevant for a given query, and 2) future ML
models could be trained on it.

Queries The job search query space is vast and com-
plex, containing queries as simple as “full time” to queries
as complex as “ziprecruiter senior remote python machine
learning engineer”. We wanted to bias towards head queries
that users most frequently search for but still wanted to in-
clude queries from our torso in order to be representative of
our traffic. To do this, we first took our top 2,000 queries
(representing 80% percent of our traffic), manually combed
through them to remove queries whose relevance labeling
tasks would be considered trivial. For example, jobs for the
query “full time” could trivially be labeled based on whether
the job offered full time employment. We then obtained
named entity recognition (NER) tags for each query1 us-
ing our in-house job search query tagger inspired by (Cheng
et al. 2020), and further categorized queries by their number
of tokens. With our queries categorized, we drew stratified
random samples from each category to ensure that our query
set wasn’t overly biased towards a single category (such as
unigram job titles). The list of query tags can be found below
in Table 2.

NER tags

workplace job type job title
generic title implied seniority seniority company

area of interest specialty other

Table 2: Tags from our Query NER Tagger

Locations The job search location space is similarly vast,
with job seekers searching for locations as broad as “re-
mote” and “USA” to as specific as “Manchester, Vermont”
and “Tribeca”. Locations in which have a large inventory
of jobs present several issues for collecting relevance judg-
ments. Searches in these locations generate a prohibitively
large number of results to be labeled with our allocated la-
beling budget. Furthermore, as these locations have a large

1As an example, “ziprecruiter senior remote python ma-
chine learning engineer” is tagged as [B-company, B-seniority,
B-job type, B-area of interest specialty, B-job title, I-job title, I-
job title]



inventory of jobs in general, they also often have a larger in-
ventory of relevant jobs to serve in search results, preventing
us from achieving our desired balance of irrelevant and rel-
evant results for relevance tuning. To avoid these problems,
we needed to pare down our possible location space of over
100,000 unique areas (states, cities, towns, neighborhoods,
etc) in the US to a few hundred that provided us with what
we needed. To do this, we used an area’s population as a
proxy via wikidata (contributors 2024), randomly selecting
a few hundred whose populations were between 10,000 and
30,000.

Query-Location Pairs After collecting a candidate set of
query-location pairs, we executed searches using the C++
search engine for each pair on our static snapshot of our
job index, obtaining tens of thousands of candidate result
sets. From these, we only selected those that had our desired
distribution of relevant and irrelevant jobs where relevance
was estimated using C++ search engine’s relevance function
score and between 10-100 results. If multiple candidate lo-
cations were obtained for a query, we selected the location
with the fewest number of duplicate jobs. When all was said
and done, we had several hundred search result sets gen-
erated from our query-location pairs, containing thousands
of query-job pairs. We sent these query-job pairs to a third-
party labeling service to get relevance grades, ultimately re-
sulting in the creation of the dataset D as mentioned in Sec-
tion 1.

3 Offline Evaluation
Getting relevance grades for query job pairs is a common
practice in search relevance used to get a quantitative as-
sessment of how good a search engine is (Moniz, Torgo, and
Vinagre 2016). With relevance grades, we can calculate met-
rics like precision, recall, and NDCG to get a holistic picture
of our search engine’s performance. NDCG is a commonly
used metric used to measure how well-ordered a result set
is compared to its ideal ordering (Wang et al. 2013). For us,
our ideal ordering of a result set is when it’s ordered by rel-
evance grades descending: with the most relevant results at
the top and the most irrelevant results at the bottom. This
directly captures what searches expect: the results they’re
looking for at the top with less relevant results appearing as
they scroll down. During our offline evaluation, each “ex-
ample” in our dataset was a query-location pair (ie an en-
tire result set) as opposed to a query-job pair, as the above
mentioned metrics are calculated on a per-result set basis as
opposed to a per query-job pair basis. Our baseline was to
match the C++ search engine’s relevance function on recall;
our primary goal was to beat it on NDCG@5. We chose 5
as our cutoff based on user research of what job seekers care
about the most on a SERP (search engine result page).

3.1 Crafting the Functional Form
Starting with the C++ search engine’s relevance function as
inspiration, we crafted an initial functional form with the
baseline goal of matching the C++ search engine’s recall.
Recall crucially measures the proportion of relevant jobs re-
turned out of the possible relevant jobs. Since we used the

C++ search engine to create our relevance label data set, this
meant that our new relevance function had to return every
single relevant job that the C++ engine did. Starting with the
same way of retrieving jobs based on matching query tokens
in certain fields, we were able to match the C++ search en-
gine’s recall by simply retrieving all jobs that had a lexical
match. Further, we took advantage of a new field our C++
search engine didn’t have access to during retrieval in order
to retrieve even more jobs.

In lexical scoring, the strength of a lexical match can be
quantified in different ways such as how important each in-
dividual token match is, how many tokens of the query were
matched, and what fields in the job the tokens were matched
in. The C++ search engine’s relevance function used a com-
bined term and field-centric approach to lexical scoring,
which was not possible in OpenSearch at the time of our de-
velopment. Forced to deviate from the functional form of our
previous relevance function, we tested out both term-centric
and field-centric approaches in our new relevance function
as well as combinations of the two in different variations.

3.2 Tuning
The OpenSearch query DSL provides search relevance en-
gineers with the ability to weight how much they care about
lexical matches by scaling the BM25 score for each job field
as well as different other matching clauses. In our new rele-
vance function, we initially had over 10 field boosts that we
needed to tune. Though we began with attempting to tune
each boost by hand to build intuition, we quickly ran into
a problem: when some segments of queries would benefit
from a change in a boost, others would suffer. With a dataset
containing dozens of query segments and a thousand query-
location pairs, having over that many boosts to tune by hand
is intractable. To solve this, we employed Bayesian opti-
mization (Frazier 2018). Bayesian optimization is effective
for finding the optimal values in a multi-dimensional search
space with a computationally expensive objective function.
We optimized for NDCG@5, and each iteration evaluated
all 1,000 query-location pairs by executing search requests
for each before calculating the average NDCG@5 across the
result sets.

Figure 1: An example sweep of Bayesian optimization

Figure 1 shows one of our Bayesian optimization runs
with a few example boosts. Here, the more yellow a line
is in the parallel coordinates plot, the higher the test set
NDCG@5. In this, we can especially see how over time the
optimizer learns which parameter values to exploit as shown
by more concentrated yellow lines for particular values.



3.3 The Overall Process
We started initially by trying to optimize over our training
dataset, tuning over 10 boosts each with continuous values.
However, we immediately found our optimizer was strug-
gling to learn. In Bayesian optimization, the complexity of
a parameter space is dictated by its dimensionality and the
possible values that each parameter could take on. To rem-
edy this, we employed two key methods. First, we decided to
heavily pare down the dimensionality by setting fixed boost
values for fields we had strong intuition and conviction on:
this intuition was built through our aforementioned process
of manual tuning. Secondly, we gave the optimizer access
to less then 10 possible discrete values for each parameter
rather than a continuous space.

At the same time, we decided to start with a single seg-
ment of our query space to further reduce the difficulty
for the optimizer. The intuition here is that queries in the
same segment (such as unigram job title queries of “nurse”)
should should have a similar optimal set of boosts as one
another and exhibit similar behavior when changing boosts.
Intuitively, if a job title token in a query appears in the title
field of a job, the job is likely relevant so you want it to be
higher up in your ranking.

However, sometimes we still weren’t able to beat the C++
search engine’s relevance function. Here, we dug into the re-
sults from our optimization, looking at queries that we were
losing the most on, crucially analyzing the factors that went
into the final relevance score for each result in a result set.
This qualitative evaluation not only allowed us to build more
intuition around what the optimal set of boosts should look
like for each query and segment, but most importantly was
the catalyst for coming up with novel ideas to change the
functional form of our relevance function. With each change
in our functional form came a new run of our optimizer. We
then repeated this process until we beat the C++ relevance
function on our test set NDCG@52. Then and only then did
we add a new query segment and repeat again until all seg-
ments were covered. An overview of this process is outlined
in Figure 2.

Figure 2: The overall process of relevance tuning

2It’s also worth noting here that manually correcting bad rele-
vance labels from our crowd-sourced annotators also provided us
with increases in our evaluation metrics, as individual labels are
often inconsistent among annotators even for the same data

This process also led us to come up with new rewrite and
stemming rules for our tokenizer, ideas for manual treat-
ments of particularly difficult queries, and ways to improve
our semantic query classifier. The biggest unlocks for the
functional form of the new relevance function were penaliz-
ing jobs where not all query tokens were present in its fields
and boosting jobs where all query tokens appeared in the
title.

Tuning BM25 parameters OpenSearch also provides
search relevance engineers with the ability to tune the BM25
parameters b and k for each field in the index. b is the field
length penalty, meaning jobs with longer fields are penal-
ized. k is the term saturation, which controls how many oc-
currences a term must appear in a field in order to be consid-
ered relevant.

With our set of field boosts held constant, we tuned these
for a few fields resulting in a lift of 0.5% in NDCG@5: a
non-negligible increase for minimal effort.

Figure 3: Tuning b and k on an example field in our index
with all other boosts held constant

As can be seen in Figure 3 showing an example field we
tuned b and k on, they were not independent in their effect
on NDCG@5. We found this lack of independence to be
the case in every field, but found that different fields exhib-
ited different correlations of NDCG@5 with b and k. This
is backed up by blog posts from OpenSearch and Elastic-
search.

4 Online Evaluation
After obtaining a sufficient functional form and set of boosts,
we conducted an A/B test to evaluate our solution’s perfor-
mance online. The control variant used the existing C++
search engine and the test variant used the OpenSearch
based engine with the aforementioned relevance function
and boosts. Normally, after the top 1000 jobs for a query are
retrieved by the engine, a separate reranking layer is run be-
fore result set pagination to balance relevance of results with
monetization based on user engagement. Since we wanted
a clear measurement of our new search engine’s impact on



relevance we disabled the reranking layer for the duration of
the experiment.

In order to determine the success of the new search en-
gine, we relied on measurements of user engagement. More
specifically, we relied on an engagement signal called an ap-
ply start. Our search engine serves results to users in a two-
pane user interface. The left pane exposes a list of jobs for
job seekers to engage with, while the right pane shows ex-
panded details for a job that has been clicked on in the left
pane. Each query entered generates a set of jobs called an
impression set. Additionally, the right pane includes a but-
ton which allows job seekers to submit an application for
the job listing. Clicks on this button are called apply starts.
Our hypothesis was that if the new search engine was serv-
ing more relevant results, we would see an increase in apply
starts per query entered per user. The metric used to measure
this hypothesis is called right pane impression set CTR.

One problematic aspect of this metric is that it’s highly
dependent on the number of queries users enter. However,
there were no significant differences between test and con-
trol in the number of queries entered per user, making it suit-
able for us to evaluate this hypothesis. Additionally, we mea-
sured the number of apply starts per user, regardless of the
number of queries entered per user, to account for this prob-
lem.

Metric %-Relative Lift
(99% CI)

right pane impression set CTR [3.67%, 10.68%]
apply starts per user [0.45%, 13.66%]

Table 3: Online Performance

Table 3 shows the results for our new engine when com-
pared to control on the key metrics we previously identified.
As we can see, the new engine showed statistically signif-
icant improvements upon both metrics, validating our hy-
pothesis which was based on the offline evaluation of our
new relevance function.

5 Future Work
As we introduce new methods of search engine retrieval or
make modifications to our relevance function we will likely
need to employ many of the techniques described in this pa-
per to measure relevance improvements and tune new pa-
rameters and boosts. For example, our current engine mainly
relies on lexical matching technology to retrieve relevant
jobs for a user’s query, but we’d like to leverage transformer
models and dense vector search technology to retrieve rele-
vant jobs that could not possibly be retrieved by the current
lexical search engine. In this future we’d likely combine re-
trieved jobs from both lexical and dense vector search en-
gines and we will likely need to tune parameters that con-
trol how much a particular engine’s score contributes to the
overall score for a job. We could collect query-job pairs, get
them labeled, and repeat the Bayesian optimization process
to identify the best values for these parameters.

Additionally, we recognized that while we were able to
measure our new relevance function’s ability to match the
recall of the existing search engine, we never conclusively
proved that the new relevance function was capable of re-
trieving relevant results that weren’t able to be retrieved by
the existing engine. This was due to the fact that we only
collected relevance judgments for query-job pairs retrieved
by the existing engine. To properly measure improvements
on recall in the future, we won’t merely collect judgments
using our existing relevance function and search engine, but
also collect judgments from any new system we desire to mi-
grate to. This will allow us to effectively measure whether
the new system was capable of retrieving jobs that the old
system could not.

6 Conclusion
In this paper, we discussed our experience migrating from
an existing search engine to a new one, specifically focusing
on preserving the relevance of search results. While several
resources lay out the high-level steps to perform such a mi-
gration, our paper delves into an actual implementation of
these steps, providing useful, detailed insights that are often
not discussed in these resources. We provided a definition of
relevance in job search and devised unique strategies for col-
lecting data to evaluate a search engine. We proposed a novel
approach for using a well-known machine learning based al-
gorithm to tune parameters for a search relevance function.
Lastly, we showed that this approach to tuning and evaluat-
ing relevance functions can not only maintain the relevance
of search results in an online setting, but actually improve
upon it. We share this knowledge with the hopes that others
may apply it when attempting to migrate their search engines
or simply make improvements upon their existing relevance
functions.
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