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Abstract
Labeled datasets are essential for modern search engines,
which increasingly rely on supervised learning methods like
Learning to Rank and massive amounts of data to power deep
learning models. However, creating these datasets is both time-
consuming and costly, leading to the common use of user click
and activity logs as proxies for relevance. In this paper, we
present a weak supervision approach to infer the quality of
query-document pairs and apply it within a Learning to Rank
framework to enhance the precision of a large-scale search
system.

1 Introduction
Industrial search systems that leverage supervised learning
and deep learning techniques require large volumes of high-
quality labeled data to produce relevant results. One of the
key challenges in developing these systems is the significant
time and cost involved in manually labeling massive datasets.
This process often requires training Subject Matter Experts
(SMEs), providing comprehensive guidelines, and waiting
several months to curate a meaningful volume of graded
relevance labels. Compounding this challenge is the fact
that such data can quickly become outdated, necessitating
repeated annotation efforts.

To circumvent the costs of creating “golden” datasets,
search and recommendation systems frequently rely on user
activity logs as implicit labels for user-query-document inter-
actions. These logs treat user actions on previously displayed
results as feedback on relevance. While this approach helps
address data scarcity, it often causes search engines to opti-
mize for engagement rather than true relevance. Although
engagement and relevance are correlated, models trained
solely on activity logs may exhibit the Matthew Effect (Perc
2014), amplify clickbait, and over-rely on activity-based fea-
tures. This correlation can further break down in cases where
user interface signals are ambiguous. For instance, a “dis-
miss” button might indicate disinterest, a temporary lack of
relevance, or simply a desire to clear viewed results. As a re-
sult, engagement-optimized models can suffer from reduced
precision and recall.

To address these issues, the industry has increasingly ex-
plored weak supervision, a set of methods for generating
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noisy yet informative training labels efficiently and at scale.
Early approaches utilized curated data sources (Mintz et al.
2009) or aggregated crowdsourced labels (Dalvi et al. 2013).
More recently, Snorkel (Ratner et al. 2017) introduced the
idea of SMEs authoring multiple heuristics, or labeling func-
tions (LFs), with varying accuracies and coverage, which are
then aggregated into a single label per data point (Ratner et al.
2016; Bach et al. 2017). Snorkel Drybell (Bach et al. 2019)
extended this concept by incorporating organizational knowl-
edge to refine heuristics and improving scalability through
sampling-free aggregation techniques. The rise of Large Lan-
guage Models (LLMs) further enhances weak supervision,
with LLMs now being used as powerful heuristics themselves
(Hsieh et al. 2023; Kojima et al. 2022).

However, a limitation of existing aggregation approaches
is their focus on achieving consensus among heuristics with-
out explicitly optimizing for label accuracy, often due to the
absence of ground truth data. However, a more common sce-
nario in industrial settings is the availability of a small dataset
of ground truth labels obtained through human annotation,
albeit insufficient to train Deep Neural Networks (DNNs) at
scale. This scenario presents an opportunity to combine orga-
nizational knowledge with a limited “golden labeled dataset”
to simplify heuristic aggregation, thereby scaling up weak
supervision while minimizing noise.

In this paper, we describe a distributed, scalable weak
supervision solution that we successfully deployed in produc-
tion to significantly improve the precision of a large-scale
job search system. Building upon Snorkel’s programmatic
approach, we propose a novel technique that leverages SME-
authored heuristics, enriched with a seed set of ground truth
labels, to generate high-quality training data at scale.

2 Related Work
Snorkel (Bach et al. 2017; Ratner et al. 2016, 2017) is a
weakly supervised ML framework that allows SMEs to pro-
grammatically label datasets using rules or heuristics, known
as Labeling Functions (LFs), with varying accuracy and cov-
erage. LFs can output multi-class labels, abstain, and may
also be correlated. Snorkel combines LF outputs using a
sampling-based, unsupervised generative model that learns
from the agreements and disagreements among LFs, with-
out requiring labeled data. This approach assumes that LFs
meet minimum thresholds for accuracy and coverage. The



resulting “consensus model” generates probabilistic labels
for a much larger unlabeled dataset, which is then used to
train a discriminative classifier, enabling supervised learning
without ground truth labels.

Snorkel Drybell (Bach et al. 2019) adapts Snorkel for
industrial-scale deployment, addressing challenges like scal-
ability and reliance on handcrafted LFs. It scales to large
datasets by adopting a distributed computation backend and
replacing the sampling-based generative model with a more
efficient, sampling-free approach implemented in Tensor-
Flow (Abadi et al. 2016). To reduce reliance on manual LFs,
Drybell introduces a template-driven interface that integrates
existing organizational knowledge, such as internal models
and taggers, into the labeling process.

In (Nitzan and Paroush 1982), the authors demonstrate
that weighted majority voting is the optimal decision rule for
aggregating the decisions of m voters (under certain assump-
tions). (Berend and Kontorovich 2014) further refines this
result, showing that the rule holds only when high-confidence
(frequentist) weight estimates are available.

In this work, we build on these foundations by leverag-
ing organizational knowledge bases to streamline LF cre-
ation and improve labeling accuracy. We adopt a probabilis-
tic model trained on a small annotated dataset with binary
outcomes, a common resource in industrial settings. This ap-
proach leads to a simpler, scalable labeling model (equivalent
to a weighted majority voter) and improves weak labeling
accuracy. Our system operates at scale, labeling hundreds of
millions of data points efficiently.

3 System Architecture
3.1 Label Function Evaluation
This stage is implemented using Apache Spark (Armbrust
et al. 2015; Zaharia et al. 2016), which processes the anno-
tated dataset alongside the end-model’s training and evalua-
tion datasets to execute a set of m Label Functions on each
record. The LFs are implemented as Spark User Defined
Functions (UDFs) for scalability, and they leverage external
databases, models and taxonomies to make heuristic deci-
sions. For example, Figure 1 shows the system leveraging a
standardized taxonomy reference, a machine learning model
and an external database during LF execution.

Unlike Snorkel, which supports multi-class labels, our so-
lution focuses on binary labels for the annotated data (though
the end-model’s training dataset may be multi-class). Each
LF outputs True, False, or null, representing a positive vote,
negative vote, or abstention.

If an LF meets latency requirements and avoids using
future information (e.g., downstream conversion signals), it
can also be served online. In such cases, the LF is added as a
feature to the end-model, directly enhancing its performance.

3.2 Weak Labeler Training, Inference and
Relabeling

The weak labeler aggregates LF outputs into a single prob-
abilistic label, formulated as a supervised learning task. We
train a generative model on a small annotated seed dataset,

Figure 1: End-to-end design of the weak supervision system and
its interaction with external data sources. The distributed processes
are built using Apache Spark and TensorFlow.

treating LF outputs as features. Due to its simplicity (as de-
scribed in Section 4.1), the model is efficiently implemented
in Apache Spark, which also handles scoring the weak labeler
on the end-model’s training and evaluation datasets.

Snorkel’s generative model focuses on minimizing LF dis-
agreements without relying on labeled data, effectively acting
as a “consensus model”. In contrast, our approach leverages
the annotated dataset to weigh LFs based on discriminative
power, improving labeling accuracy.

We use the weak labeler’s output probabilities to relabel
the end-model’s training and evaluation datasets, replacing
y with Ep[y], where p is the weak labeler’s output (see Sec-
tion 4.2 for details). Unlike Snorkel, which trains the end-
model directly on p due to the absence of ground truth labels,
our method refines the existing labels, y.

3.3 End-Model Training and Serving

The end-model is a Deep Neural Network (DNN) with tens
of millions of parameters, trained on hundreds of millions of
data points. It is trained in a distributed environment using
TensorFlow (Abadi et al. 2016) and Horovod (Sergeev and
Del Balso 2018).

The trained model is deployed online using TensorFlow
Serving (tfs 2016). Any LFs identified as “serveable” are
incorporated as additional input features during both training
and serving.



3.4 End-Model Evaluation
The evaluation dataset is scored and relabeled by the weak
labeler, following the same process as the training data (Sec-
tion 5.3). We compute NDCG@k on three sets of labels: (1)
the original labels, to measure performance on the initial
engagement task; (2) the updated labels, to evaluate improve-
ments from weak supervision; and (3) the weak labeler’s
predictions, to gauge how well the end-model has learned
from the weak labels. Model evaluation is implemented in
Spark.

4 Model Design
4.1 Weak Labeling Model
To aggregate the LF “votes” into a single probability score,
we frame the problem as a supervised learning task where
the LF outputs serve as input features, and a small, binary-
annotated dataset provides ground truth labels. This annotated
dataset is significantly smaller than the end-model’s training
data, addressing the challenge of scaling human annotations.
Given the limited number of features (LFs) and the small
dataset size, we opt for a low-complexity probabilistic gen-
erative model to avoid overfitting. To further simplify the
model, we assume the LFs are independent.

Let m represent the number of Labeling Functions, y be
the true label, and zi denote the output of the ith LF. The
labels are defined as y ∈ {0, 1} for negative and positive
classes, respectively, and zi ∈ {0, 1, ϕ}, where ϕ indicates
abstention. The log-odds can be expressed as:
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Assuming independence among LFs, Equation 1 simplifies
to:
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For each zi, we define three binary features xia = 1a(zi),
where 1a(x) is the indicator function for a ∈ {0, 1, ϕ}. This
allows us to rewrite Equation 2 as a weighted linear model
logit(p) = wTx+ b where the weights and bias are defined
as:

wia = log

(
P (zi = a|y = 1)

P (zi = a|y = 0)

)
, b = log

(
P (y = 1)

P (y = 0)

)
The probabilities P (y) and P (zi = a|y) are estimated

from the annotated dataset. This formulation effectively re-
duces to weighted majority voting, allowing for efficient coef-
ficient estimation and probability computation using standard
distributed computing frameworks.

While the independence assumption theoretically compli-
cates LF design (requiring each LF to avoid capturing corre-
lated signals), in practice, minor violations of this assumption
do not significantly impact the final ranking model’s perfor-
mance. This is because the weak labeler’s outputs are treated
as inherently noisy.

Annotated Dataset Size To estimate the required dataset
size, we assume the LFs have binary outcomes (no absten-
tions) and model each LF as a Bernoulli process over n
records. Assuming the estimation error follows a normal dis-

tribution, we have p ≈ p̂±zα

√
p̂(1−p̂)

n where p̂ = k/n, with
k representing the number of times the LF outputs 1. For a
95% confidence interval, zα = 1.96, leading to a maximum

error bound of ±2
√

0.5·0.5
n . This implies that to achieve an

error less than E, we require approximately 1/E2 samples.
For example, achieving an error of ≤ 5% would need about
400 samples.

Therefore, the number of samples required to reliably es-
timate each LF’s output falls in the range of hundreds to
thousands – significantly fewer than the hundreds of millions
of data points typically needed to train a large DNN model.
This makes curating the golden dataset relatively simple, re-
quiring only a few hours of work from an in-house annotation
team to produce reliable and accurate labels.

4.2 Using Weak Labels for Model Training
Our job search ranking model uses a listwise Learning to
Rank approach. This is typically a better choice for ranking
tasks because it deals with the relative ordering of items
rather than modeling absolute pointwise scores. Specifically,
our model optimizes ListNet (Cao et al. 2007) or the listwise
softmax cross-entropy loss (Pasumarthi et al. 2019):

L̂(Q,D) = −1

q

q∑
i=1

ni∑
j=1

yi,j · log
(

exp (ŷi,j)∑ni

k=1 exp (ŷi,k)

)
(3)

where q is the number of queries, ni is the number of docu-
ments Dj for each query Qi, and yi,j and ŷi,j are the target
relevance value and predicted score respectively.

Our weak labeler predicts the probability p of a job being
“extremely irrelevant” (false positive), to improve the ranking
model’s precision. This is incorporated into Equation 3:
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q
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)
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(
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)
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= −1

q
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[(1− p) · yi,j + p · yp]·log
(

exp (ŷi,j)∑ni

k=1 exp (ŷi,k)

)
(5)

Here, yp represents the label that would be assigned if yi
were identified as a false positive. Notice that the weakly su-
pervised loss simplifies to merely updating the ground truth



labels, eliminating the need for any model or loss modifica-
tions. This reduction is broadly applicable whenever the label
terms can be factored out of the loss function. Unlike Snorkel,
which lacks ground truth labels, our approach leverages weak
supervision as a prior or regularizer to fine-tune the target
model’s performance.

5 Experiments and Results
5.1 Seed Dataset Preparation
To develop our weak supervision system, we curated a
golden dataset by sampling approximately 1500 represen-
tative queries from the search logs and choosing the top 3
documents for each, focusing on improving the precision of
the top k results. The resulting 4500 (user, query, document)
triplets were annotated by an in-house team, labeling each
document as either “extremely irrelevant” or not. The annota-
tion task was framed using negation, with the primary goal
of reducing egregiously poor results, while still improving
overall search precision.

5.2 Label Function Creation
We created 10 LFs to determine whether a retrieved document
was relevant to the provided implicit and explicit context.
Examples include:
• If the query contains a job title, the search tokens must

appear in the title of the retrieved job.
• The seniority difference between the user and the retrieved

job should not exceed one level (seniorities are predicted
by another model).

• If the query includes a job title, its industry must match
that of the job (title-industry relationships are defined in a
taxonomy file).

Some LFs relied on simple string matching, while others
leveraged models, databases, and taxonomies to make deci-
sions. As noted earlier, the LF outputs are in {0, 1, ϕ}.

5.3 Updating Labels of the Training Dataset
The search ranking model is trained on user activity logs,
with different label values yi being assigned to different inter-
actions. For example, a user clicking on a result and applying
to that job might have the highest value while a user dis-
missing the job might be given the lowest value. We tried
the following relabeling techniques using the weak labeler’s
output probabilities, in Equation 5:
1. R1: yp = ydismiss

2. R2: yp = 0

3. R3: yp = ydismiss for organic; p = 0 for advertised jobs.

5.4 Offline Results
Weak Labeler Validation We evaluated the weak labeler
by splitting the 4,500-record golden dataset into an 80-20
train-test split. The generative model achieved an AUC of
0.86 on the test set, demonstrating strong capability in identi-
fying irrelevant results with high accuracy.

To further assess the weak labeler’s effectiveness, we ap-
plied it to the search model’s training dataset and analyzed

Figure 2: Quantiles on the X-axis, p(irrelevantJob) on the Y-axis

score distributions across various user interactions. As illus-
trated in Figure 2, we observed that 40% of dismissed jobs
received an irrelevance score above 0.7, while only 20% of
applied jobs exceeded a score of 0.6. This pattern aligns with
expectations, reflecting a gradation in relevance across user
interactions — from apply, save, view, skip, to dismiss.

We also examined edge cases to validate the model’s pre-
dictions. Specifically, we spot-checked jobs that were dis-
missed but had low irrelevance scores, as well as jobs that
were applied to despite having high irrelevance scores. These
anomalies aligned with known user behaviors: dismissals can
occur for various reasons unrelated to relevance, and some
users apply broadly to multiple jobs regardless of fit.

Search Model Evaluation We evaluated the model fol-
lowing the approach in Section 3.4, using both the original
labels (user interactions) and the weak labeler’s outputs. As
shown in Table 1, the weak supervision approach signifi-
cantly improved NDCG@10 when evaluated against these
probabilistic labels, indicating successful knowledge transfer
to the ranking model. This improvement came with only a
minor drop in NDCG@10 based on user engagement labels,
suggesting that the model retained most of its original perfor-
mance while incorporating the new signals. Additionally, the
observed increase in query-job feature importance highlights
that the ranking model learned stronger query-document rele-
vance patterns, aligning with the design of the LFs focused
on query-job semantic matching.

Table 1: Weakly Supervised Model Performance Metrics

Metric Relative Change
NDCG@10 (Original Labels) −1% to −2%
NDCG@10 (Weak Labels) +34% to +42%
Query-Job Feature Importance +15% to +30%

Rule-Based Mismatch Rates −9% to −15%
Job Sessions +0.8%
Positive Recruiter Ratings +11%

5.5 Online Results
We deployed multiple versions of the weakly supervised rank-
ing model into our search stack, using the same weak labeling
model across all variants while varying only the relabeling
approach (Section 5.3). Performance was measured using



proxy indicators for search quality (rule-based heuristics),
user engagement (job sessions), and down-funnel outcomes
(recruiter interactions).

Variant R1 improved relevance and engagement but neg-
atively impacted revenue. R2 further improved relevance
but reduced job applications and increased dismissals, likely
due to yp < ydismiss lowering the importance of dismissal-
related features in the model. R3 addressed R1’s revenue is-
sues and achieved our business objective of improved search
precision, as shown in Table 1. Specifically, it reduced rule-
based mismatch rates, and increased job sessions through
more user engagement with job alerts. Job alert quality is
highly dependent on the top k results, suggesting improved
relevance at higher-ranking positions. An increase in positive
recruiter ratings also indicates that more users applied to jobs
that they were a good fit for.

6 Conclusions and Future Work
We highlighted the importance of relevance-labeled datasets
over solely relying on user activity logs for training ranking
models. Given the time and resource demands of manual
labeling, weak supervision offers a scalable alternative by in-
corporating subject matter expertise and external knowledge
sources into the labeling process. In this work, we detailed
the design of our end-to-end weak supervision system and
shared results from both offline experiments and a successful
online deployment.

Future improvements include making our LFs serveable,
as current online features only partially align with offline LFs.
Enhancing the weak labeler itself is another avenue – either
by improving model performance with fewer assumptions
or by reducing reliance on a golden dataset. We also plan
to explore using LLMs as LFs (Kojima et al. 2022). While
generalist LLMs still struggle with complex search relevance
tasks (Liu et al. 2023), they could be effective for simpler
labeling tasks, potentially replacing parts of the weak super-
vision pipeline. Emerging research further explores LLMs as
judges, annotators, or reasoning agents (Hsieh et al. 2023),
offering promising directions for future work.
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