
Lessons Learned — Building ML Models to Remove Irrelevant Results in Job
Search

Gabriel Womark, Ritvik Kharkar, Ishan Shrivastrava
Ziprecruiter, Inc
604 Arizona Ave

Santa Monica, California 90401 USA
{gabrielw, ritvikk, ishans}@ziprecruiter.com

Abstract

The presence of irrelevant search results is an important prob-
lem to solve for any modern search engine. For job search en-
gines, this problem manifests when a job seeker receives an
irrelevant job for a query. Such results can occur due to insuf-
ficient measurement of relevance within the system or due to
competing objectives such as monetization. The occurrence
of such results worsens the job seeker experience, harms rev-
enue, and can affect long-term brand image. Therefore, it is
crucial to identify and address the issue of irrelevant search
results. We propose a supervised machine learning approach
for removing irrelevant search results. We share offline and
online results and lessons learned along the way.

1 Introduction
Search engines are crucial in the online job search ecosys-
tem. At ZipRecruiter, our keyword search engine drives job
seeker applications to both paid job listings and organically
scraped jobs, the latter providing additional value by ex-
panding job options for job seekers.

Figure 1: a “border patrol agent” job that appears for a “re-
cruiter” query due to a reference to “Recruitment” in the job
title and high employer bid

Our search engine aims to balance relevance for job seek-
ers with delivery for paying employers. However, this bal-
ancing act can result in irrelevant results for job seeker
queries such as the result shown in Figure 1. Given the grow-
ing level of internal feedback on the incidence of such irrel-
evant results for key job seeker queries and with the goal

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of building a more robust product, we wanted to engineer a
sufficient solution.

To address irrelevant results, we first adopted a manual
approach: identifying problematic queries, diagnosing root
causes, devising targeted solutions, and implementing them
in production. For instance, the query “Human Resources”
often returned unrelated jobs matching the term only in de-
scriptions, in clauses such as “speak to a Human Resources
Rep”. We resolved this by filtering out jobs that match “Hu-
man Resources” only in their descriptions.

We quickly encountered several problems with this man-
ual approach:
• Targeted solutions impacted too little traffic to measure

changes in engagement with statistical significance.
• We lacked a clear method to assess the severity of rel-

evance issues or identify problematic queries. While en-
gagement data offered some relevance signals, it was lim-
ited by insufficient data for infrequent queries and influ-
ences from non-relevance factors like job distance, post-
ing age, etc.

A broader solution was needed to address relevance issues
across many queries, capable of estimating the relevance of
each candidate result and filtering out irrelevant ones. Our
solution involved:
• Defining relevance grades to measure query-job rele-

vance.
• Creating a labeled data set of query-job pairs.
• Training a supervised machine learning model to predict

result relevance.
• Setting a relevance threshold to determine whether re-

sults should be removed or kept.
We evaluated the model offline and through an online ex-

periment. Although it did not meet the metrics needed for
deployment to production, the process provided the follow-
ing valuable insights for removing irrelevant jobs with ma-
chine learning:
• Measurement of relevance improvements through en-

gagement signals can be error-prone.
• Sufficiently descriptive semantic signals are required to

prevent the removal of relevant jobs.
• The quality of relevance labels is imperative for training

an accurate supervised machine learning model.



2 ML Based Approach
We aimed to create a data set of triplets D = (qi, ji, li)
where (qi, ji) is the ith query-job pair and li was its cor-
responding relevance label. From there we would generate
a feature vector xi for each query-job pair in the data set.
This feature vector xi would consist of features that could
easily be computed at inference time. With this data set and
the corresponding feature vectors, we could train a super-
vised learning algorithm to predict the relevance of a given
query-job pair.

2.1 Defining Relevance
To measure the relevance of a query-job pair, we defined
five grades of relevance as shown in Table 1. Crowd-sourced
annotators were asked a prompt containing these relevance
definitions and asked to label a few thousand query-job pairs
accordingly. Consistent with the language in these defini-
tions, we are trying to understand how likely a job seeker
would be to apply to a job if they had searched a given query.

Grade Description

0 Horrible match and I definitely would not ap-
ply—extremely irrelevant.

1 Bad match and there’s a very low chance I
would apply—irrelevant.

2 I understand why I see this job but am hesi-
tant to apply—somewhat relevant.

3 I will actually apply to this job even though
it’s not an absolute perfect match—relevant.

4 This job is perfect and I will certainly ap-
ply—extremely relevant.

Table 1: relevance grades are based on users willingness to
apply

2.2 Collecting Relevance Labels
The process outlined in Section 2.1 where we send query-
job pairs for labeling to crowd-sourced annotators eventually
proved to be a bottleneck in two ways. First, the velocity at
which we were getting labels was slow, delaying progress
on training our relevance predictor. Second, the dollar cost
of obtaining these labels from annotators was getting pro-
hibitively high.

Given recent successes in using Large Language Mod-
els for labeling tasks (Rahmani et al. 2024), we decided to
try and save time and money by engineering a prompt for
GPT 4o which would label query-job pairs in as similar a
way as possible to how annotators would label them. To
quantitatively measure this agreement, we used a commonly
used metric called Cohen’s κ (McHugh 2012) to measure
the level of agreement between two raters beyond random
chance.

After several rounds of prompt engineering, we eventu-
ally landed on a prompt which uses the labeling guidelines
in Table 1 at its core. The full prompt is omitted for confi-
dentiality.

2.3 Model Features
In order to predict relevance, we used a combination of ag-
gregated lexical and semantic features. The aggregated lex-
ical features were statistical aggregations (minimums, max-
imums, averages, etc.) of term frequency (TF) and inverse
document frequency (IDF) (Qin and Liu 2013) aggregated
over all terms in a job seeker’s search query. We included
one such set of aggregated lexical features per field in the
job; job fields included job title, job description, job com-
pany name, etc.

We also included one semantic matching feature to at-
tempt to fill in gaps that could not be addressed using lexical
features. For example, a job with title “nurse” is relevant for
a job seeker query “medical” even though such a job may
never explicitly mention the word “medical”. This semantic
matching feature was the product of an existing model, was
a function of the job seeker’s query and canonicalized job
title, and was bounded between 0 and 1.

2.4 Model
After collecting relevance labels, the size of our data set D
was about 27000 query-job-relevance label triplets. The size
of the data set led us to believe that a very sophisticated
model (such as a deep-learning model) would overfit to the
data. On the other hand, an overly simple model (such as a
logistic regression model) would likely underfit the data as it
would be unable to capture the non-linear relationships be-
tween the features we planned to use. Thus we went forward
with a Gradient Boosted Decision Tree Classifier (GBDTC)
to predict relevance on binary relevance labels.

2.5 Training
Since our goal was to remove only the most irrelevant jobs,
we binarized the quinary relevance labels such that a binary

relevance label bi =
{
0 li < 2

1 li ≥ 2
Furthermore, before training, we split D into training and
test sets using a 70/30 split.

We used the LightGBM GBDT API to train the GBDTC.
To increase robustness to data set class imbalance we set
the training parameter is unbalance to true. To prevent over-
fitting we set the training parameter early stopping rounds
to 5 such that if auc on the test set did not improve over 5
training epochs, we’d select the best performing model on
training auc before those 5 epochs. The result was a GB-
DTC with 16 trees and an average tree depth of 10.

3 Offline Evaluation
The model produces a probability that a given query-job pair
is relevant, so we need to threshold that probability to cre-
ate binary predictions. We evaluated thresholds by plotting
a receiving operator characteristic (ROC) curve. The sen-
sitivity on the curve represents the probability we would
keep a job for a given search if it was truly relevant; the
specificity represents the probability we would remove a job
given that it was truly irrelevant. So as to create a min-
imal impact on online engagement our goal was to find
a model threshold such that sensitivity was equal to 0.9.



We could tell if a model m′ improved upon a model m if
specificity(m′) > specificity(m) when sensitivity(m′) =
sensitivity(m) = 0.9.

In Figure 2 we see an example of how adding a semantic
feature to the model can increase specificity by 5 percentage
points while keeping the sensitivity at 0.9.

Figure 2: improvement on false positive rate from including
a semantic feature in classification

4 Online Evaluation
To evaluate the model online, we would run our relevance
classifier in-between the retrieval and monetization rerank-
ing steps of a search. The classifier would accept up to 1000
job listings gathered by the retrieval step, predict the prob-
ability of relevance on each job, filter out jobs based on a
threshold we determined, and then send the remaining jobs
to the reranking step. For our experiment we A/B tested six
different thresholds on predicted probability of relevance us-
ing a single trained model. That model included all the lexi-
cal features described in Section 2.3 as well as the semantic
feature. The thresholds were selected to balance between re-
moving as many irrelevant jobs as possible while keeping a
sufficient number of jobs in the set for job seekers to browse.

Given the volume of data we collect in an online A/B test
and our limited LLM labeling budget, there was no way for
us to assess the quality of our classifier at different thresh-
olds by labeling all the query-job pairs for each test variant
in the experiment. Thus we had to rely on online engagement
metrics and revenue metrics to assess the quality of our clas-
sifier. More specifically, our search engine result page has
two panes in its user interface. The left pane presents a list
of jobs with minimal details such as the title, company name,
location, etc. A click on a job in this left pane exposes a more
detailed description of that job in a right pane. At the top of
the right pane is a button that allows the job seeker to begin
the process of applying to the displayed job. We call clicks
on this button “apply-starts”.

We believed that apply-starts would have a strong cor-
relation with relevance (as defined in Section 2.1) as a job
seeker’s willingness to apply to a job was a strong indica-
tion of its relevance. Clicks on the left pane seemed to be a
weaker indication of relevance as they don’t account for the
fact that the job seeker had observed a job description. On

the other hand, completed applies and hiring signals are of-
ten too sparse for us to measure with statistical significance.

Therefore, we assumed that if our model improved the rel-
evance of search results, we would see an increase in apply-
starts per job seeker while preserving the amount of revenue
we generate from listings that pay us on a per-apply-start
basis.

Table 2 displays metrics from our online experiment. The
leftmost column displays the threshold applied to predicted
model probabilities to determine whether a job should be fil-
tered out of search results. The middle column shows the rel-
ative performance of each test variant on apply-starts per job
seeker when compared to the control variant. As we can see,
99% credible intervals show that there was no statistically
significant improvement or reduction in apply-starts per job
seeker. The only exception is the variant with a threshold
of 0.74 which showed a statistically significant reduction in
apply-starts per job seeker.

Threshold

%-Relative Lift
Apply-Starts

Per Job Seeker
(99% CI)

%-Relative Lift
Revenue

Per Job Seeker
(99% CI)

0.34 [-3.46%, 1.59%] [-6.26%, -2.28%]

0.40 [-2.35%, 1.79%] [-7.36%, -3.49%]

0.42 [-2.35%, 2.73%] [-6.97%, -2.92%]

0.49 [-2.08%, 3.17%] [-9.96%, -6.17%]

0.51 [-4.66%, 0.25%] [-9.83%, -5.93%]

0.74 [-7.27%, -2.45%] [-11.60%, -7.76%]

Table 2: relative lift in apply-starts and revenue by threshold
show no significant losses in clicks for all thresholds aside
from 0.74, while all test threshold show significant loss in
revenue

The rightmost column of Table 2 shows the relative per-
formance of each test variant on revenue per job seeker when
compared to the control variant. As we can see, 99% credi-
ble intervals show a statistically significant decrease in rev-
enue per job seeker on all test variants. This can likely be
attributed to the fact that all test variants reduced the num-
ber of jobs that job seekers could engage with. Interestingly
we do not see a linear decrease in revenue as the threshold
for relevance gets more strict.

Based on this table, we can infer that for test variants
where we saw an insignificant change in apply-starts per job
seeker but a significant decrease in revenue, we were likely
removing jobs that would have yielded revenue on an apply-
start (“paid apply-starts”) and replacing them with jobs fur-
ther down the result set that did not pay for engagement.

While we had anticipated the possibility that there would
be no increase in apply-starts per job seeker, due to the fact
that we were simply removing job listings and replacing
them with results further down in the result set, we did not
expect to see a loss in revenue from these apply-starts.



Based on these results we decided not to deploy the model
to production with any of the thresholds we tested.

5 Post - Mortem
Although we could not release the model to production due
to a decrease in paid apply-starts, we still had many ques-
tions about the online performance of the classifier:

• What was the distribution of relevance grades for paid
apply-starts that were removed by the classifier? Was it
possible that the paid apply-starts we removed were truly
irrelevant, despite receiving engagement from job seek-
ers?

• If the paid apply-starts were labeled relevant, how could
we recover those removed by the classifier?

• Were the labels generated by our LLM labeler of high
quality? If the paid apply-starts we removed were labeled
in the middle relevance category (quinary grade 2), was
it possible these labels were incorrect?

5.1 Equating Apply-Starts and Relevance
It is natural to believe that a job seeker’s willingness to apply
to a job served to them in search results is strongly correlated
with its relevance for the query. This is an assumption we
had made in Section 4. However, we did not take the time to
verify this assumption before running our online experiment.

To verify this assumption, we took one month of historical
jobs served in search results that had received paid apply-
starts. We ran the classifier used during the online experi-
ment with a threshold of 0.49 to classify whether these paid
apply-starts would have been removed by our classifier. This
threshold was selected because it had the least negative im-
pact on user engagement compared to other thresholds. We
then sampled 5000 predicted-removed paid apply-starts and
the respective queries they were served for and applied the
labeling process we discussed in Section 2.2. We used this
labeled sample to produce a distribution of P (l|A∩R) where
l is a quinary relevance label and A indicates membership in
the set of paid apply-started jobs and R indicates member-
ship in the set of jobs removed by our classifier.

Figure 3: distribution of true relevance grades for paid apply-
starts which were removed by the classifier

Assuming our labeler is correct, Figure 3 shows that
roughly 50% of the removed paid apply-start sample has a
relevance label of 0 or 1, which are considered irrelevant
using the binary scheme proposed in Section 2.5. Certain
queries exhibit this pattern more than others. For example,
the query “work from home” has nearly 75% of its removed
paid apply-starts labeled as irrelevant. Many of these paid
apply-starts are jobs requiring presence in the office, which
seems to counter the intention of the query.

We realize that this analysis doesn’t provide a direct mea-
surement of the probability any apply-start would be labeled
irrelevant. This is due to the fact that we only generated la-
bels for a very specific segment of apply-starts, namely those
that would be removed by our classifier and generated rev-
enue from engagement. However, this analysis does show us
that even if we improve the accuracy the of the classifier, we
would still see at least 50% of the loss in paid apply-starts
that we observed in the online experiment. In the future we
will have to decide whether this inherent potential revenue
and engagement loss is an acceptable cost for improving the
relevance of search results.

5.2 Recovering Relevant Apply-Starts
In spite of the fact that 50% of removed paid apply-starts
are truly irrelevant, the fact remains that the other 50% are
on truly relevant jobs. In order to launch the model into pro-
duction we’d need to reduce this quantity.

To identify why these relevant paid apply-starts were re-
moved, we analyzed our model’s training data to discover
what feature combinations lead to incorrect predictions by
the classifier.

We discovered that the hardest examples for the classifier
to predict correctly were ones in which there was a miss-
ing value for the semantic feature described in Section 2.3.
Concretely, we find that the probability of having a missing
value for our semantic feature is about 20% for truly relevant
jobs which are removed by the classifier and is about 75%
for truly relevant jobs which are kept by the classifier. This
indicates a possible gap in our semantic feature such that
when this feature is absent, the classifier mistakenly deems
the corresponding job as irrelevant.

This implies the need for more descriptive features that
could effectively capture portions of a job that semantically
match the query.

5.3 Assessing Quality of LLM Relevance Labels
Finally, we investigate whether the relevance labels gener-
ated by the LLM are of high quality. To do this, we sample a
set of 100 pairs of queries and paid apply-started jobs. These
jobs are assigned an LLM quinary relevance label of 2 yet
removed by our classifier. The idea is to only consider those
jobs whose quinary relevance grade is on the cutoff between
being relevant and being irrelevant which might therefore be
the most susceptible to mislabeling.

Given these 100 query-job pairs, we assign three of our in-
ternal team members to independently label them using the
quinary relevance scale. We find that 33% of these pairs have
no majority label and 67% do have a majority label. This
finding was very insightful for our future work as it showed



that even three independent humans find it challenging to
align on a quinary relevance grade for those jobs which the
LLM labeled on the boundary between being relevant and
being irrelevant. For those 67% of pairs where there was
a majority quinary relevance grade, 85% of them were la-
beled as having a quinary grade of 2 or higher, meaning that
we admitted a 15% false negative rate even when majority
agreement was reached.

All together, this exercise highlighted the fact that data
labeling is not fully objective and even two different annota-
tors can disagree on what the “correct” label should be.

6 Future Work
Having identified important barriers to pushing out the rele-
vance classifier in production, our next steps will primarily
focus on addressing these issues. Given that we stand to re-
move irrelevant jobs from search results that generate rev-
enue from job seeker engagement (Section 5.1), we’ll need
to estimate the amount of revenue lost from using a perfect
classifier (i.e. our LLM labeler) on a small sample of his-
torical search data. This could allow us to set guardrails on
online engagement and revenue metrics that account for the
fact that not all engagement is relevant.

Furthermore, this misalignment between engagement and
relevance may suggest that engagement metrics are not a
good barometer for relevance improvements. A possible so-
lution to this problem is to distill the knowledge of our LLM
labeler into a much smaller model. That model could be used
to generate relevance labels on the large volume of online
experiment data. While this smaller model wouldn’t be able
to be used in production because it cannot meet our latency
requirements for serving results to job seekers, it could still
be feasible to label online experiment data and create on-
line experimentation metrics based on relevance (Wang et al.
2024). This would also allow us to better measure the trade
off between relevance, engagement, and revenue discussed
in the previous paragraph.

To improve the recall of our classifier (Section 5.2), we
can incorporate more semantic signals by using transformer
models to generate query embeddings and job embeddings
that are stored in our search index. We can use similarities
from query and job embeddings as a feature for the model to
capture additional semantic signals that our current classifier
model does not capture (Haldar et al. 2020).

Lastly, we’d like to improve the quality of our labels by
consulting with domain experts (Section 5.3). We believe
domain experts should be able to devise more objective defi-
nitions of relevance that we can provide to our LLM Labeler.
With more consistent labeling, we believe we can effectively
reduce the confusion of our classifier model, especially in
cases where the relevance of a job for a query might not be
clear.

7 Conclusion
In this paper we discussed how the keyword search engine
at ZipRecruiter tries to balance between showing relevant
jobs and generating revenue from job seeker engagement.

Trying to strike that balance can lead to surfacing of irrel-
evant search results. We highlighted the difficulty of solv-
ing this problem using manual fixes and proposed a new
approach that could generalize to fixing this problem on all
search queries using both established and novel ML technol-
ogy. Though the proposed approach did not yield significant
improvements in key business metrics, our analysis revealed
valuable insights. We discovered that even an accurate rel-
evance classifier might decrease engagement as job seek-
ers can interact with irrelevant results. We also discovered
the important need for more descriptive semantic features to
make up for weak lexical and only-basic semantic match-
ing signals indicating relevance. Finally, we discovered that
relevance labeling can be a highly subjective task, even for
a human. Without providing more clear objectives for la-
beling, we don’t believe model performance could be im-
proved. We’ve shared these lessons learned with the hopes to
contribute to others’ efforts to improve their keyword search
engines and provide job seekers a better search experience.

References
Haldar, M.; Abdool, M.; Ramanathan, P.; Sax, T.; Zhang,
L.; Mansawala, A.; Yang, S.; Turnbull, B. C.; and Liao, J.
2020. Improving Deep Learning For Airbnb Search. CoRR,
abs/2002.05515.
McHugh, M. L. 2012. Interrater reliability: the kappa statis-
tic. Biochem Med (Zagreb), 22(3): 276–282.
Qin, T.; and Liu, T. 2013. Introducing LETOR 4.0 Datasets.
CoRR, abs/1306.2597.
Rahmani, H. A.; Yilmaz, E.; Craswell, N.; Mitra, B.;
Thomas, P.; Clarke, C. L. A.; Aliannejadi, M.; Siro, C.; and
Faggioli, G. 2024. LLMJudge: LLMs for Relevance Judg-
ments.
Wang, H.; Sundararaman, M. N.; Gungor, O.; Xu, Y.; Ka-
math, K.; Chalasani, R.; Hazra, K. S.; and Rao, J. 2024. Im-
proving Pinterest Search Relevance Using Large Language
Models. arXiv:2410.17152.


