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Abstract

In this paper, we address the challenges of enterprise exper-
imentation with hierarchical entities (e.g., for recruiter prod-
ucts) and present the methodologies behind the implemen-
tation of the Enterprise Experimentation Platform (EEP) at
LinkedIn, enabling intelligent, scalable, and reliable experi-
mentation to optimize performance across the company’s en-
terprise offerings. We start with an introduction to the hierar-
chical entity relationships of the enterprise products and how
such complex entity structure poses challenges to experimen-
tation. We then delve into the details of our solutions for EEP
including taxonomy based design setup with multiple entities,
analysis methodologies in the presence of hierarchical enti-
ties, and advanced variance reduction techniques, etc. Recog-
nizing the hierarchical ramping patterns inherent in enterprise
experiments, we also propose a two-level Sample Size Ratio
Mismatch (SSRM) detection methodology.

Introduction

The LinkedIn ecosystem propels member and customer
value through a series of enterprise products, including tal-
ent solutions (for job seekers and recruiters), marketing so-
lutions (for advertisers), sales solutions and learning solu-
tions. The optimization of this value is achieved through the
strategic utilization of data-informed decision-making and
the integration of A/B testing (Kohavi, Tang, and Xu 2020)
for more precise measurement of feature performance across
LinkedIn’s products. Enterprise products at LinkedIn used
to suffer from inadequate experimentation capabilities due
to several challenges associated with the intricate nature of
its entity relationships.

(1) Different from individual consumers, the enterprise
customers purchase LinkedIn’s products (Recruiter, Sales,
Learning) under contract or account entity, and under each
contract or account, there are seats or profiles ranging from
ten to ten thousands, therefore form the “Hierarchical entity
relationships” (Figure 1). When we launch a new feature or
deramp an existing feature with A/B testing to measure its
impact, the enterprise customers often time are very sensi-
tive to such change and require “same account same expe-
rience” to ensure all seats (i.e., recruiters, sales representa-
tives, etc.) under the same contract or account get consistent
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Figure 1: Hierarchical Entity Relationship in LinkedIn Tal-
ent Solutions (Recruiter Products).

experience during A/B testing. Therefore, in designing en-
terprise experiments, it is imperative to use “higher order en-
tity” such as contract as the randomization entity, while the
success metrics we are interested in are the “lower-order”
seat entity metrics.

(2) Enterprise experimentation faces the small sample size
and high variance problem. Because the experiment is ran-
domized by contract / account entity and the total number
of contracts / accounts is two or more order of magnitude
smaller than the total number of seats / members, the enter-
prise experimentation can have two or more orders of mag-
nitude larger variance than seat / member level experiments
(i.e., a common consumer experimentation). Enterprise ex-
perimentation also tends to suffer from outliers due to high
heterogeneity among accounts / contracts. For instance, a
contract with a multinational company customer may en-
compass 10,000 or more seats, while a contract with a small
business customer may include only 2 to 10 seats.

(3) The complex entity relationships in enterprise experi-
ments also greatly complicates the Sample Size Ratio Mis-
match (SSRM) issue. SSRM represents the situation where
the observed sample size ratio (treatment sample size/con-
trol sample size) in the experiment is different from the ex-
pected ratio (Fabijan et al. 2019). A prior analysis revealed
that approximately 10% of triggered analyses at LinkedIn
exhibited SSRM (Chen, Liu, and Xu 2019). In order to en-
sure the internal validity and trustworthiness of the analy-



sis results, SSRM analysis should be included for every ex-
periment (Kohavi, Tang, and Xu 2020). When SSRM is de-
tected, it signals experiment is bias, rendering metric analy-
ses invalid, and the experiment owner needs to diagnose/-
fix the issue before interpreting the experiment readout.
While SSRM is a well-explored topic in regular member-
randomized experiments (Fabijan et al. 2019), SSRM un-
der the hierarchical entity relationships have not been previ-
ously studied in the literature. The absence of a mechanism
to detect SSRMs in EEP poses the risk that an ineffective
treatment may erroneously seem beneficial in the enterprise
experiments and be deployed to users.

Taxonomy based Design Setup

In traditional consumer experiments, the randomization, tar-
geting, and success metric measurement are typically con-
ducted on the same entity (e.g., member ID, guest cookie
browser ID, etc.). However, in enterprise experimentation,
EEP offers a high degree of flexibility. Users have the ca-
pability to utilize multiple entities for setting up random-
ization, targeting conditions, and success metric entities, as
long as the entities and relationship are compliant with the
taxonomy of the business line.

Greater flexibility in the setup comes with a greater com-
plexity. Users at all levels have different knowledge in the
complex domain and unrestricted configuration can be error-
prone. Therefore we have introduced a formal model of the
LinkedIn Enterprise domain, called “taxonomies”, which
define entities and types of relationships (Figure 2). Tax-
onomies are used to limit users’ selections to a correspond-
ing subset of entities and restrict their selections for entities
used in A/B metric attribution and randomization. For ex-
ample, users’ test setup can only use the entities included in
their corresponding taxonomy (i.e., Talent Solution cannot
use advertiser which is a Marketing Solution entity in setup)
and the hierarchical ramp must follow a strict 1:N relation-
ship to yield valid A/B testing result (i.e., Sales Solution can
randomize at the higher order “contract” entity and measure
at the lower order “seat” entity, but cannot do vice versa).
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Figure 2: Taxonomy of LinkedIn Talent Solutions.

Variance Estimation with Hierarchical Entities

Enterprise experiments have misaligned randomization unit
and analysis unit: the experiment needs to be randomized by
accounts or contracts to ensure “same account same experi-
ence”, but the success metric for analysis are the “lower-
order” seat entity metrics. These metrics align with stan-
dard practices, facilitate comparisons across experiments,
and avoid inconsistencies in the size of “higher-order” en-
tities like accounts or contracts, which can vary significantly
and lack stability over time.

Due to the misalignment of randomization unit and analy-
sis unit, all metrics of interest in enterprise experiments need
to be analyzed as ratio metrics. Mathematically, suppose that
n contracts ¢ = 1, ..., n are randomly allocated to treated or
control groups in an enterprise experiment. Let Y; represent
the revenue of contract ¢ and N; represent the number of
seats in contract ¢, both of which are count metrics. Because
contracts match the randomization units in the experiment,
they can be assumed to be independent and we can directly
calculate Var(Y) and Var(N) using the sample variance
formula. When it comes to revenue per seat (our metric of
interest in the enterprise experiment), however, the sample
variance formula cannot be directly applied to calculate their
variance because the seats under each contract are not inde-
pendent. Instead, we need to view the seat-level metric (rev-
enue per seat) as a “ratio” derived from two contract-level
count metrics, which can be defined as Z below:
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Note that Y; and N, are aggregated across all contracts (ran-
domization units) in the treatment/control groups first before
calculating the ratio. Because Y and N are jointly normal
based on the central limit theorem, Z = Y /N is also nor-
mally distributed, whose variance can be calculated by the
delta method:
. _

= %Var(Y) + %Var(N) - Q%CO’U(Y, N).

3)

Before EEP has been made generally available at
LinkedIn, a common mistake many analysts made in analyz-
ing enterprise experiment was considering revenue per seat
as a count metric Z; = Y;/N; and computing its variance by
the sample variance formula Var(Z) = 53" (Z; —
Z)2. This would lead to incorrect variance estimate because
Z; (i = 1,...,n) are not independent in an enterprise ex-
periment that was randomized by a higher-order entity such

as the contract.

Var(2)

Variance Reduction

Because enterprise experiments have low sample size and
highly heterogeneous experimental entities (i.e., account,



contract), it is important to apply variance reduction tech-
niques to ensure that they could have enough statistical
power in detecting treatment effects.

Basic Variance Reduction

In EEP, we reduce variance by leveraging covariates that
are independent of the treatment but correlated with the ex-
perimental outcomes. The default analysis pipeline in EEP
uses the CUPED methodology (Deng et al. 2013), which
leverages pre-experiment metrics as the covariates. Suppose
T; € {0, 1} represents whether contract ¢ has been randomly
assigned into the control or treatment group, Y; is a count
metric at the contract level (e.g., revenue of contract ¢) dur-
ing the experiment period, IV; is the number of seats trig-
gered in contract ¢ during the experiment period, and X
and M, are the corresponding measurements of Y; and NV,
during the pre-experiment period. Compared to the regular
difference-in-mean estimator (without variance reduction):
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Because the pre-experiment metrics X; and M; typically
have a high correlation with the experimental outcomes Y;
and N;, they can be used to largely remove the pre-existing
difference among the experimental entities. The EEP vari-
ance reduction pipeline has implemented both the regression
adjustment method and the stratification method including
outlier capping capabilities.

Advanced Variance Reduction

In addition to the default pipeline, we have also developed
an advanced nonlinear variance reduction solution for EEP
which can leverage a large number of covariates (i.e., not
just the pre-experiment metrics (Deng et al. 2013) and uti-
lize nonlinear adjustment models (i.e., extending the linear
adjustment method from CUPED to flexible machine learn-
ing methods (Guo et al. 2024; Jin and Ba 2023). Let X
denote a rich class of covariates where the pre-experiment
metric is included as a special case, and ¥ (.) and 2V (.)
represent some machine learning predictors for Y and N
based on X. In order to achieve unbiased variance reduc-
tion, it is important to eliminate two types of biases: (1) “re-
gressor bias” from f[i(.) whose convergence rate could be
slower than n~1/2 without a well-posed parametric model;
(2) “double-dipping bias” which occurs if the same dataset
is used both for model-fitting and for prediction. Algo-
rithm 1 describes our proposed variance reduction proce-
dure which introduces de-biasing terms to correct the re-
gressor bias and also employs the cross-fitting technique to

remove the “double-dipping bias”. The first step is the K-
fold sample splitting for D = (Y;, N;, T;, X;)™_, and then
the second step is cross-fitting: for each k € [K], we use
the data {(X;, N;,Y;): T; = 1,4 € D"F} to obtain es-
timators ﬂ}/’(k)(x) for E[Y(1)| X = «] and ﬂf[’(k) (x) for
E[N(1)| X = z]. Likewise, we use {(X;,N;,Y;): T; =
0,i € DM} to obtain ﬂ(};’(k)(x) and [Lév’(k)(:v). Then, we
calculate predictions Y (X;) = ﬂg’(k)(Xi) and o (X;) =
,&g’(k)(Xi) for all i € D®), w € {0,1}. Finally, we esti-
mate the treatment effect by
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pared to the difference-in-mean estimator in (4), the estima-
tor in (7) can be viewed as substituting the sample means of
the treated and control groups with averages of the fit-and-
debias predictions for the potential outcomes of all n units
(e.g., contracts). It can be proved that the variance reduc-
tion procedure in Algorithm 1 is finite sample unbiased and
asymptotically optimal (in the sense of semi-parametric effi-
ciency) among all regular estimators as long as the machine
learning estimators are consistent, without any requirement
for their convergence rates (Jin and Ba 2023). In practice, the
proposed advanced nonlinear variance reduction methodol-
ogy can further reduce up to 30% of variance compared to
CUPED by going beyond linearity and incorporating a large
number of extra covariates.

Algorithm 1: Advanced variance reduction solution by lever-
aging flexible nonlinear models with a large number of co-
variates
1: Input: Dataset D = {(Y;, X;, N;, T3} ,, number of
folds K.
2: Randomly split D into K folds D) k=1,... K.
3: fork=1,...,Kdo
4:  Use all (X;,N;,Y;) with T; = 1and i ¢ D® to
obtain ﬂf’(k)(x) and ﬂf[’(k) (z);
5. Useall (X;,N;,Y;) with T; = 0andi ¢ D% to
obtain ﬂéf’(k)(x) and ﬂév’(k) (x);
6:  Compute Y (X;) = ﬂz’(k) (X;) and 2N (X;) =
i ®) (X;) forall i € D®) and w € {0, 1}.
end for
: Compute the estimator according to (7).
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Two-Level Sample Size Ratio Mismatch

By default, EEP is triggered by its analysis unit (individ-
ual seats), which is more granular than its randomization
unit (the whole contracts). By only triggering a subset of
active seats from a contract in each enterprise experiment,
EEP effectively filters out noise generated by dormant seats



unaffected by the experiment treatment, enhancing sensitiv-
ity and experiment power.

Sample Size Ratio Mismatch (SSRM), a.k.a. Sample Ra-
tio Mismatch (SRM), indicates a significant discrepancy be-
tween the observed ratio of triggered units across different
experiment variants and the expected ratio as per the experi-
ment’s design. Previous studies in the literature have primar-
ily addressed SSRM at the randomization unit level. Rec-
ognizing the hierarchical structure described above, we pro-
pose to examine two distinct types of SSRMs within EEP (or
more generally, in a cluster-randomized experiment): one at
the randomization unit level (contract-level SSRM) and the
other at the analysis unit level (seat-level SSRM). Both of
them are essential for safeguarding the trustworthiness of the
experiment results (Figure 3).
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Figure 3: Flowchart for Sample Size Ratio Mismatch
(SSRM) detection in EEP.

Because a contract would get triggered as long as at least
one of its seats is triggered into the experiment, the seat-
level SSRM is more likely to occur than the contract-level
SSRM. Consider a seat-level SSRM scenario where a bad
treatment feature substantially reduces the number of active
users (seats) within each contract. Failure to detect the seat-
level SSRM could erroneously favor the ineffective treat-
ment variant. This is because the treatment variant may ex-
hibit a more favorable revenue-per-user ratio than the control
variant, given that the remaining users within the contracts
are likely the most active ones. Mathematically, the ratio
metric Y/N becomes unsuitable for decision-making when
the treatment alters N (seat-level SSRM), as it becomes
challenging to interpret whether a change in the ratio value
is beneficial or detrimental. Unfortunately, in this scenario,
the traditional SSRM detection solution at the randomiza-
tion unit level (contract-level SSRM) would not be effective.
This is because a contract would be triggered into the exper-
iment as long as at least one of its seats is active/triggered.
Despite the considerable decline in active seats within the
contracts, the overall number of contracts triggered in the

experiment may not significantly change.

To the best of our knowledge, the detection of SSRM at
the analysis unit level for a cluster-randomized experiment
has not been presented in the literature. Given that the “ex-
pected sample size ratio” is unknown at the analysis unit
level (seat level) and the analysis units (seats) within the
hierarchical ramping pattern are not independent, its detec-
tion method must diverge from the existing approaches at
the randomization unit level. Our proposed solution to de-
tect analysis-unit-level (seat-level) SSRM is summarized in
Algorithm 2, which ensures the stability of the denomina-
tor metric /V, enabling meaningful conclusions based on the
ratio metric Y/N. It involves using N/" as a baseline to ad-
just for pre-existing size differences among contracts, which
is crucial due to the high heterogeneity in contract size in
EEP. The coefficient 6 in step 3 minimizes var(D) which
is similar to the CUPED estimator. Under the traditional
SSRM detection framework, Nt"99¢7ed can be viewed as
the “observed sample size” in the experiment and NP7 acts
as a surrogate for the unknown “expected sample size” at
the seat level. Because the test for seat-level SSRM in step 4
is conducted at the randomization unit (contract) level, it no
longer violates the independence assumption of the t test.

Algorithm 2: Detection of analysis-unit-level (seat-level)
SSRM

1: Obtain the list of contracts that were triggered in the
experiment (assuming no contract-level SSRM).

2: Compute the contract-level metrics N*!"%99¢7¢d and
NPT for each triggered contract. (N'"%99¢7¢ represents
the number of triggered seats per contract in the exper-
iment period, and NP"¢ represents the number of active
seats per contract in the pre-experiment period. )

3: For each triggered contract 7, compute

E(NPT)),

where 0 = cov(N'ri99¢ered  NPTe) [yar(NPTe).

4: Run a two-sample t test to compare whether the mean of
D, is significantly different between the treatment group
and the control group. If the difference is significant, fire
a seat-level SSRM alert.
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Results
Enable and Scale Up Measurements

Before the implementation of EEP, enterprise-facing feature
or infrastructure changes were rolled out to our customers
in quarterly batches (known as Quarterly Product Releases)
without A/B testing. While we diligently monitored metric
changes before and after each release and collected qual-
itative feedback from our customers, our enterprise busi-
ness line lacked robust measurement and data-driven in-
sights necessary for optimal decision-making. With the in-
troduction of EEP, we have transformed the concept of ”A/B
testing being impossible” into a feasible reality for enter-
prise products.



Since its launch, the number of enterprise experiments
running on the EEP platform has rapidly scaled: starting
with approximately 10 experiments during the pilot phase,
the number escalated to over 100 per quarter during the beta
phase, surpassed 500 per quarter post the General Availabil-
ity of EEP, and currently maintains a pace of over 1000 ex-
periments (testing around 300 unique new product features)
per quarter. The typical run time of each experiment ranges
from 2 to 4 weeks.

Bolster Trustworthiness through SSRM Guardrails

EEP has improved the quality of readouts by implementing
SSRM guardrail monitoring and reducing manual analysis
errors. At an aggregated level, we have found approximately
7% of tests suffer from SSRMs. Our observations include:

(1) The existing single-level SSRM detection method (at
the contract level) failed to identify any issues within EEP.
This is because a contract is triggered into the experiment
if at least one of its seats is triggered. In most cases, con-
tracts containing zero triggered seats were rare, and nearly
all contracts were triggered regardless.

(2) The seat-level SSRM (under the proposed two-level
SSRM solution) should be the focus for SSRM detection
within EEP. Space limitations prevent us from discussing its
root cause diagnosis (e.g., due to residual effects, etc.).

Expedite Experimentation Velocity and
Productivity

With EEP, the end-to-end clock time required to leverage
online testing for evaluating new enterprise features has sig-
nificantly improved. Prior to EEP, the engineering team had
to manually generate test / control contracts for each seg-
ment, implement workarounds to target contracts and seats
correctly, manually check quality guardrails such as SSRM,
and execute error-prone manual scripts for compute read-
outs with variance reduction procedures. With EEP, all these
tasks are end-to-end automated by the platform including the
advanced variance reduction solution, resulting in a 50% re-
duction in efforts and a 2-week reduction in clock time per
experiment (Figure 4). Additionally, EEP has streamlined
the post-review and quality check process, and introduced
a user-friendly readout report Ul that allows Product Man-
agers to self-serve, thereby expediting the business decision-
making process.

Conclusions

In conclusion, our work on the Enterprise Experimentation
Platform (EEP) at LinkedIn has addressed critical challenges
posed by the hierarchical entity relationships within enter-
prise products. The proposed two-level Sample Size Ratio
Mismatch (SSRM) detection methodology, operating at both
randomization unit and analysis unit levels, further enhances
the platform’s capability to ensure internal validity and the
reliability of analysis results.
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