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Abstract

A robust multi-objective ranking approach is developed for
identifying the ranking function that arrives at the desired
balance of multiple business objectives in job marketplaces.
The multi-objective optimization problem is converted into a
constrained optimization of a single objective, making it easy
to configure/adjust for different business needs. The formu-
lated constrained optimization is solved using a direct search
algorithm that combines Augmented Lagrangian Multiplier
method and Powell’s method with an unbiased estimate of po-
sition bias. The approach demonstrates good robustness in a
numerically ill-conditioned experimental optimization prob-
lem that stems from real business needs in job marketplaces.
A further online test using the identified ranking function
shows a good agreement between the online metrics values
and offline simulation results.

Introduction
Job marketplace are dynamic platforms that connect em-
ployers with potential employees, or vice versa. They sur-
face opportunities for job seekers to find employment while
enabling employers to access talents that meet their require-
ments. Online job marketplaces have revolutionized the hir-
ing process by broadening reach, improving efficiency, and
providing valuable data to optimize recruitment efforts. It is
now much easier for job seekers to explore career opportu-
nities and for employers to identify and reach skilled can-
didates on job marketplaces. Job marketplaces are highly
competitive and diverse, with a range of industries, job
types, and employment models (full-time, part-time, free-
lance) and work mode (in-person, remote, travel, and hy-
brid). Advanced technology, such as AI-driven matching,
automated screening processes, virtual interviews, and talent
databases, is now playing a central role in this ecosystem.

In order to enhance the efficiency, effectiveness, and over-
all performance, optimization of the job marketplace is aim-
ing to maximize value for all participants - employers, job
seekers, and service providers. Major optimization objec-
tives include: personalized matching of job seekers to job
opportunities, enhancing user engagement to keep job seek-
ers active on the platform, establishing optimal pricing for
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job listings and ensuring fair costs for employers while sus-
taining the platform’s competitiveness and profitability.

Among these objectives, the balance between the best
matching and fair costs is particularly important. The bal-
ance is typically achieved through an optimal ranking of the
job listings. Like other e-commerce or service marketplaces,
job marketplace optimization often uses two-step ranking to
maintain the quality of results to job seekers while balancing
efficiency and scalability (Bi et al. 2020). In the first step, a
vast pool of job listings is quickly filtered down to a man-
ageable subset of high relevance to job seekers. The sub-
set is then re-ranked in a second step according to the de-
sired trade-off between relevance and other business objec-
tives, such as maximizing revenue, enhancing user engage-
ment, balancing short term gains and long term growth, and
maintaining equilibrium between supply and demand. These
objectives are typically not congruent with each other and
thus there is unlikely a single optimal solution that can sat-
isfy them simultaneously. In order to address this challenge,
Multi-objective optimization (MOO) techniques are widely
used in job marketplace optimization (Wang et al. 2012).

Related works
Due to its crucial role in marketplace optimization, MOO
has become a highly active research field and an extensive
number of MOO techniques have been developed in re-
cent years. There are some comprehensive reviews of the
latest advancements and the current state of MOO tech-
niques published in recent survey studies (Zaizi, Qassimi,
and Rakrak 2023; Emmerich and Deutz 2018). MOO tech-
niques, such as Pareto optimization (e.g., weighted sum opti-
mization, constraint-based optimization, or hybrid optimiza-
tion), evolutionary algorithms (Hua et al. 2021), and swarm
intelligence (Sharifi et al. 2021), were successfully applied
to solve the MOO problems for marketplace optimization.

Among these approaches, Pareto optimization with lin-
ear ranking function has the lowest computational complex-
ity (Li et al. 2023). One of the representative works in this
field (Bai, Xie, and Wang 2018) is converting the origi-
nal MOO problem into a linear programming formulation
(with constraints), which is then solved using Augmented
Lagrangian Multiplier (ALM) method. A highlight of the
work is its offline simulation framework through replay-
ing the auctions recorded from real online ranking requests,
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Figure 1: Auction simulation on a single request. A request retrieved based on relevance is re-ranked by a trade-off between
click probability and rewards of click (e.g., bid). The reward on item tsi is provided along with the request, while the click
probability has to be estimated for its new rank position i.

which is now widely used by online marketplaces. However,
the over-parameterized objective function makes the opti-
mization configuration very complex and difficult to update
to keep up with rapid change of business needs.

Preliminary about offline auction simulation
In a typical online auction process, a small subset is re-
trieved (via search engine) from a vast pool of candidates
(e.g., job listings) according to their relevance to the user.
The retrieval set (also called a request) is then ranked ac-
cording to marketplace policy that is usually a function of
the relevance, bid, and other features. The top K items after
the ranking are selected as the impression set for a place-
ment, where K is the number of available impression posi-
tions. The performance of the ranker is evaluated by a set of
metrics, such as clicks and revenue. This online process for
evaluating different marketplace rankers could be very time
consuming and expensive. Therefore, we usually resort to
offline simulations to identify a small set of ranker variants
that satisfy different business needs. The variants are then
tested online for further evaluation.

For offline auction simulation (Figure 1), a data set that
logs click information for a holdout of not ranked retrieval
sets (i.e., these sets are sorted by relevance only) is used
for the evaluation of different rankers (Bai, Xie, and Wang
2018). In the simulation a request that contains a list of items
{t1, t2, . . . , tn} is ranked by a marketplace ranker to a new
ranking {ts1 , ts2 , . . . , tsn}, where s denotes a ranking/per-
mutation of {1, 2, . . . , n}. Reward metrics r (e.g., clicks and
revenue) are then calculated on the top K items from the new
ranking. As the items are shuffled from their original ranks
(for which we know they are clicked or not from logging),
we will need to estimate the click probabilities of these items
p(tsi , i) on their new ranking position i. Once we have the
click probabilities we can calculate the expected (estimated)
value of metric r as E(R) = Σip(tsi , i)·r(tsi). For simu-

lations on a group of requests, the sum of E(R) over each
request will be the expected metric value of the entire group.

Method
Position bias estimation
The retrieval set returned by search engines is usually se-
lected based on a relevance score predicted by machine
learning models, like Learning-to-Rank (Goswami, Zhai,
and Mohapatra 2018). The relevance score is independent of
position, generated by methods such as Inverse Propensity
Weighting (IPW) (Bai, Xie, and Wang 2018) or Position-
Aware Learning (Dai et al. 2020) to overcome position bias
inherent from click data (used as training data). With posi-
tion bias ρ provided along with the relevance score γ, we
can use IPW approach to calculate the click probability of
item tsi on its new rank position as: p(tsi , i) = γ(tsi)·ρ(i).

For fast-changing marketplaces, retrieval models used for
searching will need frequent refreshing to generate rele-
vance scores and position bias estimates that match the ac-
tual number of clicks over time. However, this full model
refresh can be very expensive. A less expensive solution is
to calibrate the click probability by updating position bias
only. For a rank position i, the expected number of clicks
is Σp(tsi , i) = Σγ(tsi)·ρ(i) = ρ(i)Σγ(tsi), where the
sum is over all items placed at rank position i among all
requests. Given the actual total number of clicks for posi-
tion i is ni, an unbiased estimate of the position bias will
be ρ(i) = ni/Σγ(tsi). This estimate, as remarked below, is
also an approximate Maximum Likelihood Estimate (MLE).

Remark 1: The unbiased estimate obtained as the ratio
between number of clicks and the sum of relevance score is
an approximate MLE of position bias.
Proof: We can reformulate the click probability for a given
position as a coin toss problem: tossing n different coins
(not a coin for n times) that have different probabilities to



get heads (pi(H) for i-th coin) one time. The probability
distribution for the total number of heads follows Poisson bi-
nomial distribution (Tang and Tang 2023). Although Poisson
binomial distribution is quite complex, it can be well approx-
imated by a single Poisson distribution (λke−λ/k!, where
λ = Σipi) when n ≫ 1 and p ≪ 1 (Tang and Tang 2023).
For Poisson distribution the MLE of λ is: λ∗ = Σiki/N . As
we just toss the n coins one time without repeating, the sam-
ple size of the approximating Poisson distribution is N = 1
and thus λ∗ equals the total number heads we get for the
one trial (i.e., nk). In the context of position bias estimation,
there are a large number of items placed at the same rank po-
sition (i.e., n ≫ 1) and their click probabilities are usually
low (i.e., p ≪ 1). Therefore, we will have an approximate
MLE of position bias through ρ(k)Σγ(tsk) = nk ≈ λ∗.

MOO problem formulation
With the simulation framework defined above, we can for-
mulate a MOO problem to find the best ranking to sat-
isfy a range of business needs. In general, objective func-
tions are selected from reward functions, which can be
re-written on the basis of position bias as: E(Robj) =
Σi≤kρ(tsi , i)·r(tsi) = Σi≤kρ(i)·[γ(tsi)·robj(tsi)]. Some
commonly used objectives include clicks (for which r(·) =
1) and revenue (for which r(·) is the bid for an item).

In order to find the best ranking that maximizes a sin-
gle objective E(Robj), we can formulate the following opti-
mization problem:

Maxs∈S Σi≤kρ(i)·[γ(tsi)·robj(tsi)]
where S denotes all possible rankings (permutations) of
items in a request. For most impression placements, we can
assume that the position bias decreases monotonically with
decreased rank (as users are inclined towards clicking on
higher ranked results). Based on this assumption, the op-
timal solution s∗ maximizing E(Robj) will be the ranking
that sorts the items in descending order of γ(t)·robj(t) (here
the index is ignored as γ and r are the property of an item
t and independent of sort position). For example, the rank-
ing that yields maximum clicks will be the ranking that sorts
items in descending order of relevance score γ. For maxi-
mum revenue we can rank the items by the product of their
relevance score and bid.

For multiple objectives, we need to formulate a MOO
problem like:

Maxs∈S (Σi≤kρ(i)·[γ(tsi)·rclick(tsi)],
Σi≤kρ(i)·[γ(tsi)·rbid(tsi)])

There is typically no feasible solution that minimizes all
objective functions simultaneously (the objectives can con-
flict with each other). Therefore, attention is paid to find
solutions that cannot be improved in any of the objectives
without degrading at least one of the other objectives, i.e.,
Pareto optimal solutions. The set of Pareto optimal solutions
is called the Pareto front.

A simple approach to find Pareto solutions for a MOO
problem is linear scalarization that integrates all objectives
into a single one via weighted sum:

Maxs∈S Σobj∈OΣi≤kwobj ·ρ(i)·[γ(tsi)·robj(tsi)]

The integrated objective function can be re-organized as:

Maxs∈S Σi≤kρ(i)·Σobj∈Owobj ·[γ(tsi)·robj(tsi)]
For this single objective optimization problem the best so-
lution s∗ will be a ranking that sorts items in each re-
quest in descending order by a linear ranking score: z =
Σobj∈Owobj ·γ(t)·robj(t). This method, however, can only
find the points on the convex hull of the objective set (Em-
merich and Deutz 2018). In addition, as a priori method,
this method requires sufficient preference information to de-
fine suitable weights. Instead of defining suitable weights,
it might be easier to express some objectives as constraints
while optimizing the others.
Maxs∈S Σi≤kρ(i)·[γ(tsi)·robj′(tsi)]

s.t. Σi≤kρ(i)·[γ(tsi)·robj(tsi)] ≥ ϵobj , obj ∈ O\obj′

This method, known as the ϵ-constraint method (Em-
merich and Deutz 2018), can explore both convex and non-
convex Pareto fronts. The search space of this problem is
huge (for n items the number of all possible permutations is
n!). In order to reduce the complexity, we keep using the lin-
ear ranking score: z = Σobj∈Owobj ·γ(t)·robj(t). As noted
in the linear scalarization approach, the use of linear ranker
will limit the solution to the convex hull of the objective set.

With the use of linear ranking score the assumption of
monotonicity about position bias becomes unnecessary:

Remark 2: If position bias is not monotonically decreas-
ing, we can sort it in descending order and keep the sort
index (argsort). The ranking according to the optimal linear
ranker obtained from sorted position bias can be mapped
back to the proper position using the sort index.

Solution to the MOO problem
In the MOO problem formulated above, the objective func-
tions are not continuous (nor differentiable) since they are
functions of ranking. We use a direct search approach to
solve the constraints optimization problem. To maintain
clarity and be concise, we write the optimization problem
in a general form:

Min f(w)

s.t. gj(w) ≥ 0, j = 1, 2, . . . ,m

w ∈ [0, 1]m−1

In the formulation, f(w) = Σi≤kρ(i)·[γ(tsi)·rm(tsi)] is the
kept objective function from the original m objectives, while
gj(w) = Σi≤kρ(i)·[γ(tsi)·rj(tsi)]−ϵj (for j = 1, . . . ,m−
1) are constraints converted from the rest m − 1 objectives.
In these functions, ρ(i) is estimated bias for position i and
s is a ranking decided by w via z = Σj≤mwj ·γ(t)·rj(t)
(where wm = Σj≤m−1wj). The last constraint gm(w) =
1 − Σj≤m−1wj = wm ≥ 0 is added to normalize the
weights, which is equivalent to Σj≤mwj = 1 but will reduce
the dimensionality of the optimization problem by one.

This constraint optimization can be converted to an un-
constrained one through Augmented Lagrangian Multiplier
(ALM) function (Bertsekas 2014; Baolin 2005):

ϕ(w,µ, c) =f(w)+

Σj≤m{[max(0, µj − gj(w)]2 − µ2
j}/2c



where µ is Lagrangian multiplier and c is penalty. Pow-
ell’s method (Baolin 2005) is selected to solve the optimiza-
tion problem: Min ϕ(w,µ, c) as it is derivative-free and
quadratically convergent (it will converge in a finite num-
ber of iterations for quadratic objective functions). Based on
ALM and Powell’s methods the following algorithm is pre-
sented to solve the optimization problem of offline simula-
tion for job marketplace ranking.

Algorithm 1: Score based multi-objective ranking

Input: initial point w(0) ∈ [0, 1]m−1,
initial Lagrangian multiplier µ(1) ∈ Rm

+ ,
max number of iterations allowed b

Parameter: upper bound for multipliers µmax,
initial penalty c > 0,
tolerance e > 0,
threshold for penalty update α ∈ (0, 1),
penalty scaling factor β > 1

Output: optimal solution w∗

1: define objective and constraint functions:
f(w) = Σi≤kρ(i)·[γ(tsi)·rm(tsi)] and
gj(w) = Σi≤kρ(i)·[γ(tsi)·rj(tsi)]− ϵj
(j = 1, . . . ,m− 1) on the basis of the ranking s
decided by score z = Σj≤mwj ·γ(t)·rj(t)
and estimated position bias ρ(i).
gm(w) = wm = 1− Σj≤m−1wj .

2: Let n = 1
3: while n ≤ b do
4: Solve Min ϕ(w,µ(n), c) using Powell’s method

(search bounded in [0, 1]) with w(n−1) as the initial
point to get w(n) (for each iteration the value of ϕ is
calculated based on f(w) and gj(w) for updated w).

5: Calculate h
(n)
j = |gj(w(n))−max{0, c·gj(w(n))−

µ
(n)
j }/c|, j = 1, . . . ,m.

6: if ||h(n)|| < e then
7: return w(n) as solution
8: else
9: Update µ

(n+1)
j = min{µmax,max{0, µ(n)

j −
c·gj(w(n))}}, j = 1, . . . ,m

10: if ||h(n)||/||h(n−1)|| > α then
11: c = β·c
12: end if
13: end if
14: n = n+ 1
15: end while
16: return no solution found

Experiments
The optimization method (given by Algorithm 1) is tested
on two placements of online job marketplaces owned by our
organization. The objective is to identify the best ranker that
trades a limited loss of relevance for revenue. The two place-
ments are for different platforms (e.g., web, email, mobile,
etc.) and each has its own search engine. Each time the en-
gine retrieves about a thousand relevant jobs and send them

as a request for ranking. The first one (placement A) has
∼60 impression positions while the second one (placement
B) has ∼25 positions.

The position biases estimated (by the ratio between num-
ber of clicks and the sum of relevance score) for the two
placements are illustrated in Figure 2. They are calculated
for one month of data that are split into two halves to show
their change over time.

1st half  of the month 2nd half  of the month

Figure 2: Position bias estimated for placement A and B,
which are normalized on the basis of the first position.

As shown in Figure 2 the position bias seems quite sta-
ble for placement A, while it drifted a bit for placement B.
The drifting suggests that we may need to run simulations
frequently for placement B to update the ranker to keep up
with marketplace dynamics. The position bias of placement
A are mostly monotonically decreasing over rank position.
It is not the case for placement B and we will need to sort
the position bias prior to simulation and use the sort index to
map generated ranking back (see Remark 2).

As a stress test for robustness, Algorithm 1 is applied to
the following optimization problem for an offline simulation
on placement A.
Problem 1: maximize the number of clicks for a special type
of jobs with total number of clicks >96% of the max pos-
sible number of clicks, revenue >75% of the max possible
revenue, and promoted job revenue >56% the max possible
promoted job revenue.

It is noted that we can achieve the maximum clicks by
ranking via relevance score (i.e., max click ranker), max-
imum revenue by ranking via bid-relevance product (i.e.,
max revenue ranker), and maximum promoted job revenue
by ranking via the product of bid, relevance, and a binary
indicator function (that identifies whether a job is promoted
or not). This problem presents a significant challenge since
the special jobs account for a very small percentage (<6%)
of all jobs. There will be a huge difference in clicks be-
tween ranking them to fill all impression positions (∼60)
and none of them to these positions (this can be done due
to their scarcity). Therefore the optimization problem is not
numerically stable (i.e., ill-conditioned) and a small change
of the ranker weight will result in a big difference in the ob-
jective function value. Algorithm 1 is applied to this prob-
lem with the following parameter setting: initial penalty



c = 50, penalty scaling factor β = 5, penalty update thresh-
old α = 0.5, and upper bound of multiplier µmax = 40.
These settings are suggested as suitable initial parameters
for ALM by previous studies (Bertsekas 2014). The best
ranker for the problem is obtained in five iterations: z(t) =
0.506γ(t)+ 0.164γ(t)·bid(t)+ 0.132γ(t)·bid(t)·It∈P (t)+
0.198γ(t)·bid(t)·It∈Q(t), where It∈P (t) and It∈Q(t) are
the indicator functions for promoted jobs (P) and the spe-
cial type jobs (Q). The algorithm has an ending penalty of
6.25 × 103 and the largest multiplier capped at 40. For a
comparison a (exterior point) penalty method (Baolin 2005)
is applied to the problem, for which we have to increase the
penalty to 1×106 while scaling down the objective function
by 100 to be able to find the optimal ranker of reasonable
accuracy (1×10−3).

As an evaluation for the quality of the offline simula-
tion, Algorithm 1 is applied to find a ranker that maximizes
three objectives: total click, total revenue, and total revenue
of jobs that are promoted for certain business needs. This
MOO problem is converted into the following constrained
optimization problem:
Problem 2: maximize revenue with number of clicks >98%
of max possible number clicks and promoted job revenue
>85% the promoted job revenue of max revenue ranker.

For placement A, the optimal ranker identified is: z(t) =
0.751γ(t) + 0.135γ(t)·bid(t) + 0.114γ(t)·bid(t)·It∈P (t),
while z(t) = 0.365γ(t) + 0.358γ(t)·bid(t) + 0.277γ(t)·
bid(t)·It∈P (t) is found best for placement B.

The two rankers are tested online for one week to check
how well the online click and revenue metrics agree with of-
fline results. In order to facilitate the comparison the metric
values are normalized by the corresponding values from a
reference ranker. The normalized online and offline metrics
values are summarized in Table 1, which shows they agree
very well with each other.

Plac.† Off/On-line Click Rev. PJ. Rev.‡
A Offline 102.89% 87.03% 79.51%
A Online 105.72% 88.90% 78.95%
B Offline 100.95% 97.29% 93.59%
B Online 99.75% 99.77% 96.89%

Table 1: Normalized click and revenue of offline and online.
(† Plac. - Placement, ‡ PJ. Rev. - revenue of promoted jobs)

In particular, close approximation is observed even for
placement B of drifted position bias. It indicates the rankers
identified in simulation by the presented optimization ap-
proach are able to accurately influence ranking in favor of
desired business outcomes.

Conclusions
In this work, a robust multiple objective ranking approach
is presented for identifying the best ranking function that
can arrive at the desired balance of multiple business objec-
tives. The approach is based on an unbiased estimate of po-
sition bias and a direct search algorithm that integrates Aug-
mented Lagrangian Multiplier method and Powell’s method.

The approach demonstrates robustness in solving a numer-
ically ill-conditioned optimization problem configured per
real business need. In addition, an online test of rankers ob-
tained from offline simulation shows a close agreement be-
tween the online and offline metrics values even when there
is a slight drift of position bias. The positive online eval-
uation results indicate the identified rankers can accurately
influence ranking in favor of desired business outcomes. The
ability of the marketplace optimization approach in handling
ranking for objectives that are subjected to fast and contin-
uous refining is critical to online marketplaces competing
effectively in the crowded and dynamic environment.
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