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ABSTRACT

Transition data exists in many domains, where people spend
some time and effort in one state, and then move to the next.
For example, career professionals move to their next positions
after working at their previous positions for years; learners
move to the next courses after finishing some other courses. To
help people compare those states, and visualize their “levels of
advancement”, we propose a data-mining technique to project
each state into a 1-dimensional real value. As an example, we
apply our approach to mining seniority from career transition
data collected from linkedin.com. Experimental results show
that our model is able to learn the relative seniorities of
positions within the same company, and also the seniorities
of positions from different companies.

CCS CONCEPTS

• Computing methodologies → Learning latent rep-
resentations; • Information systems → Web mining .
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1 INTRODUCTION

A transition is the process of changing from one state to
another, such as changing from one job position (company
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+ title) to another, either within the same company or in
a different one. A common question is how to compare or
order those states. For example (1) how hard is it to become
a “senior software engineer” at company A comparing to a
“staff software engineer” at company B? (2) is course C likely
a prerequisite of course D?

Mathematically, one approach to answering such a ques-
tion is to project each state (e.g., a company-title pair) into a
one-dimensional value indicating the level of advancement. In-
tuitively, later-stage states (e.g., being senior staff engineers)
should be projected into higher values than earlier-stage
states (e.g. being entry level software engineers). Defining
such a projection typically requires manual labeling. For
example, levels.fyi1 relies on crowd-sourcing to build such
mappings for title comparisons across different companies
[11]. However, due to the sparsity of manual labels, such ap-
proaches are subject to both noise and incomprehensiveness.

In this paper, we propose a data driven approach to au-
tomatically learn such mappings, by leveraging the large
amount of existing data online. For example, linkedIn.com
contains ≈800M members’ working experiences consisting
of job positions, and each generally includes the company,
the job title, and the start and end time. Also coursera.com
has ≈80M members’ course learning history. By leveraging
such data, we plan to build a machine learning model that
automatically infers the level of advancement for each state,
without the need for human interventions.

Specifically, we propose a statistical model that captures
the positive trend and variance in state progression velocities.
Intuitively, given a transition, for example, a person spent 3
years to transit from state A to state B, we can estimate the
average velocity of the transition to be B−A

3
. By assuming

a Gaussian distribution for the velocities, and conducting a
Maximum Likelihood Estimation (MLE), we can use transi-
tion data records to adjust the mapped value for each state,
and hence learn a sensible mapping.

We claim two contributions. First, we propose a technique
that processes millions of transition records and produces
a one-dimensional mapping between states and real values,
preserving the level of advancement for each state. Second,
as an example, we apply the approach to learning job posi-
tion mappings, using 0.1M transition records between seven

1https://levels.fyi
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selected companies on linkedin.com. Our results show that
(1) within the same companies, our model is able to associate
seniorities to different positions in the correct order; (2) the
associated seniorities can be also used to compare positions
across different companies. We also discuss the inaccuracies
of the model.

2 BACKGROUND

Formally speaking, let s ∈ S represent a state (e.g., Soft-
ware Engineer at Google). Our goal is to learn a reasonable
mapping f(s) → R from states to real values. The observed
transitions in our work are in the format of r = (s1, t, s2),
indicating it takes time t for a person to transition from state
s1 to s2. Though in general we need to learn the mapping
function f , in practice we only need the mapping for a finite
set of states. Therefore, f can be represented by a vector,
where each dimension corresponds to the progression for a
different job position.

One straightforward heuristic to summarize the level of
advancements required for each position is to compute the
average year-of-experience (YOE) required to get to a state.
For example, in career transitions, if people have an average
of 8 years of experience to get to s1, but 6 years to get to
s2, we would conclude that s1 is more advanced than s2 .
The drawback of this approach is it fails to account for the
variance in the career growth velocity among the population.
For example, if s2 is a hot position in a new booming field (e.g.
blockchain), then entering s2 gives an edge to one’s career
advancement, but entering such fields does not necessarily
require a long work experience.

Learning the mapping from data points into real values
resembles learning embeddings in many machine learning
applications. The one-dimensional level-of-advancement mea-
sure can be seen as a special case of 1-dimension embedding.
However, due to the differences in the learning goals, our
scenario needs a customized setup.

The idea of embedding had been used in many approaches
including Natural Language Processing [10, 13], Recommen-
dation Systems [1, 2, 4], and in modeling career transitions
[6, 9]. The fundamental idea is to represent items (e.g. words,
or documents, job positions) into a low-dimensional vector,
so that their dot-products form a low-rank factorization of a
high-dimensional probability matrix [5]. The goal in most of
the previous work is to preserve the probability distributions
(e.g. the probability of the next word being “the”, or the
next position being a Software Engineer at Google) as much
as possible. Our scenario, in comparison, is less concerned
about predicting probabilities. To see the difference, we will
take career transition as an example.

(1) Low distributional similarity, but high similarity in
levels of advancement. Consider Google’s Software En-
gineer and Facebook’s Software Engineer, though being
highly similar in levels of career advancement, they may
often transit into very different positions (Google to
Google, Facebook to Facebook).

(2) High distributional similarity, but low similarity in
levels of advancement. Consider Software Engineer In-
terns and Software Engineers within the same company.
Although people from these two positions often transit
into similar other positions (e.g. software engineer in a
different company), we would hope them to be mapped
into far apart level-of-advancement values.

Our approach is directly inspired by visualization tech-
niques which try to summarize vast amounts of data by pro-
jecting them into a low-dimensional (typically 2 or 3 dimen-
sional) space. Such approaches include linear transformations
such as PCA [3], and non-linear transformations including
ISOMAP [14] and t-SNE [15]. These approaches represent
data items as nodes, compute the distances (or similarities)
between them, and then try to learn a low-dimensional pro-
jection to preserve the distances. This technique naturally
translates into a graph-representation of the transition data,
where

(1) States can be represented as nodes
(2) Each transition record r = (s1, t, s2) can be seen as an

edge starting from node s1 to s2, with a weight t

However, our graph structure is different from the previous
approaches in that: (1) multiple edges can exist between
different nodes (2) the graph is asymmetric (3) we learn a 1-
dimensional embedding as opposed to multi-dimensional. Our
approach applies a statistical model to aggregate the multiple
edges between graph nodes, resulting in a 1-dimensional
embedding.

3 MODEL

Our key modeling idea is to use state transitions to infer a 1-
dimensional mapping for different states. Instead of training
an embedding for downstream tasks [1, 2, 4, 10, 13], our
1-dimensional embedding is specifically aiming to capture
the level of advancement for each state. This is achieved by
designing a loss function to encourage a larger gap between
embeddings only when we observe larger temporal gaps in
transitions data. Intuitively, each state is represented as a
dot on the 1-dimensional axis. Users’ transitions can help us
“connect the dots”, and infer the relative positions of each
state. If users typically spend less time transitioning from
one position to another, then there should be a lower gap
between their corresponding values, and vice versa. We use
Figure 1 to illustrate such an example in career progression.
We derive a mathematical model to capture this notion.

Suppose we have collected users’ historical transition records.
Each record is a tuple: r = (s1, t, s2), indicating the user
started position s1 in the past, and then transitioned into
position s2 after time t (e.g., in years). Our learning goal
is to infer a mapping f that maps each state s into a real
number f(s) which measures the levels of advancement of
the state. Note that f(s) is not observed in the training data,
but is instead our learning goal.

With a given mapping f , we can estimate the user’s pro-

gression velocity during the period as vr = f(s2)−f(s1)
t

. For
different people, during different time periods, v is likely to

linkedin.com
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Figure 1: Representing position and transitions as
nodes and edges on a one-dimensional axis. In this
example, each job position (a title, company pair) is
represented as a point on the career progression axis.
Intuitively, more senior roles correspond to higher
progression values. A user’s career transition can be
seen as an edge between points.

have variations. Our key modeling assumption is that users’
progression velocities V are random variables with a Normal
distribution N (1, σ2) centered at 1:

(1) By assuming a normal distribution, we capture the
variance of the velocities across the population

(2) By assuming a positive mean, we favor an overall posi-
tive trend in progressions over time.

The learning becomes a maximum likelihood estimation,
where we try to adjust the positions of the dots, so it’s more
likely to observe what we see. We also show that this boils
down to minimizing the squared error between the observed
velocity and one.

Specifically, during MLE, we learn the mapping f with
maximum likelihood estimation over all the records:

argmax
f

∏
r

1

σ
√
2π

exp

{
−1

2

(
vr − 1

σ

)2
}

This optimization problem boils down to minimizing the
squared error between the observed velocity and one:

argmin
f

∑
r=(s1,t,s2)

(
f(s2)− f(s1)

t
− 1

)2

The above optimization can be carried out by vanilla gradient
descent algorithms.

Note how this optimization is different from directly ag-
gregating on years of experience. This allows us to capture
phenomena such as the bars for entering different companies
are different, even if the Years of Experience for entering
every company is the same, which is always zero. One limita-
tion of the Normal distribution assumption is that it does not
distinguish between personalized factors such as the prestige
of each company, or the current position. As a result, our
learned model does not provide personalized levels of advance-
ment scores, but rather a summary across the population.
We leave finer grained analysis as future work.

4 EXPERIMENTAL SETUP

Our experiments aim to test whether the automatically
learned progression mapping can truly capture the global
trends. We particularly have conducted the experiment on
users’ career progressions. We try to learn a mapping from
job positions (e.g. Facebook’s software engineer) into real
values, using users’ career transition data (e.g. John entered

From To Duration

Google,SWE Other,SWE 1.0
Other,SWE Facebook,Senior SWE 2.0

Table 1: Training data example. Consider a user who
joined Google as a software engineer in 2000, then
Uber as a software engineer in 2001, then Facebook
as a senior software engineer in 2003, we will have
two data records shown above for this user.

Microsoft 94K
Amazon 55K
Google 40K
Facebook 14K
Apple 11K
Linkedin 9K
Netflix 2K
Other 274K

Table 2: Breakdown in the number of companies
in our collected transition records. We use seven
tech companies as separate identities, whereas all
other companies occurring in the data are labeled as
“Other”. The “Other” class shows up in a large por-
tion of the transition records, and therefore helps to
align the learned level of advancement for other com-
panies. Further distinguishing between the “Other”
class can lead to more accurate results, which we
leave as future work.

Google as Software Engineer in 2008, then went to Facebook
as Senior Software Engineer in 2011).

We narrowed down our data collection into software engi-
neering positions among tech companies, including Facebook,
Google, Apple, Amazon, Microsoft and LinkedIn. We col-
lected users’ experiences from their LinkedIn profiles as the
training data. Because the vast majority of users work outside
of our study’s scope, we further filtered our training data by:

(1) Only considering users who had ≥ 2 positions within
the companies we consider

(2) Only consider positions that have “software engineer”
in the title.

(3) We use a special token “other” to represent companies
not in the short list

(4) We only keep the time duration between two positions

We show an example of the training data in Table 1. Our
training data contains 0.1M transition records. Statistics of
the data are shown in Table 2 and 3.

We use the training data to help estimate the mapping of
each position into a 1-dimensional space using the approach
discussed in Section 3. This allows us to visualize different
positions’ corresponding progressions in a single diagram.

5 EXPERIMENTAL RESULT

We try to answer two research questions:
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Software Engineer 185K
Senior Software Engineer 65K
Staff Software Engineer 8K
Senior Staff Software Engineer 2K
Other 57K

Table 3: Breakdown in the number of titles in our
collected data. In general, less data is observed for
more senior positions.

(1) Is our approach able to correctly infer the relative
seniority of positions within the same companies?

(2) Is our approach able to compare positions across dif-
ferent companies?

We present the main result in Figure 2, where each com-
pany’s job positions are visualized in the format similar to
levels.fyi.

We make the following observations:
First, the model is able to correctly learn the career pro-

gressions for the majority of the companies. All the compa-
nies’ entry-level → Senior → Staff progressions were learned
without explicitly encoding this domain knowledge.

Second, the model also learns the differences in entering
different companies at similar positions. For example, Google
and Facebook are well-known to have high bars for hiring at
different levels, which was also picked up by the model.

Third, the model also shows obvious mistakes in certain
cases. One example is Facebook’s Senior Staff Engineer posi-
tion, which was learned to fall between senior engineer and
staff engineer. One main reason it happens is the missing
career transition signals for this position. On one hand, many
engineers in this role still use “software engineer” in their
LinkedIn title; on the other hand, many engineers will con-
solidate all the previous positions in the company, and only
keeping the last position. These data points violate our mod-
eling assumptions, and therefore produce noise during model
training.

Aside from building visualizations (e.g. levels.fyi) to help
users compare positions, we also foresee the trained models
helping recommendation/search systems. For example, in
job recommendation (e.g. linkedin.com/jobs), the mismatch
between user’ and jobs’ levels of advancements can be a useful
signal for ranking or filtering the results.

6 RELATED WORK

Learning latent representations of state is a common tech-
nique used in industry. These embeddings are usually multi-
dimensional, either pre-trained in an unsupervised fashion
or computed in an end-to-end fashion. However, since we
want to visualize the advancement comparisons among all the
states, multi-dimensional embedding can be used as a feature
but not generated as the output. Our work is to generate
1-dimensional mapping from transition data.

One approach to modeling the transitions is using graph
embedding. A general approach to preserve the asymmetric
transitivity is discussed in [12], where the authors proposed

a High-Order Proximity preserved Embedding algorithm to
compute the embeddings of directed graphs. To adapt the
algorithm to the problem of transitions with time involved,
one can construct the weight in such a way that it also
captures the time elapsed for the transition. For example, the
weight might include a term proportional to the inverse of the
number of years spent in one job position before switching to
the next. A more related work which uses graph embedding
to learn job transitions has been explored in [8]. In the work,
each job position is a node, and each transition is a directed
edge connecting two nodes with a weight representing the
frequency of the transition, and then computes the graph
embedding. Differently, our work considers the number of
years taken to move from one job position to another which
is a strong indicator of level of advancement. For example, if
a person spent one year at company A, and then moved to
company B. In comparison, if the same person had worked
at company A for five years before moving to company C.
It is generally safe to assume the position at company C is
higher than the one at company B.

There are other approaches explored other than modeling
the transitions as graphs. Both [9] and [6] leverage sequence
modeling algorithms, and static features are used beyond
transitions themselves. The major focuses of them are on
a particular area of transitions: career transitions, and the
main goals are to predict next job positions rather than
comparing and ordering those job positions across different
companies. [7] manually groups positions into buckets with
numerical labels and uses regression to predict the numerical
label. The main difference from our approach is that it uses
features like word and topic, while our method learns a single
value without using any features for the position. That is,
our method only has one feature, the position id and the
embedding is only 1 dimensional. Our goal is to learn a
value to compare career positions, so personalization with
more features are not needed, unless we want to infer a new
position (cold start problem), which is not a big concern in
our use case.

7 CONCLUSIONS

Learning to map positions into progressions can provide a
high-level visualization of the field, also to help people make
comparisons. We propose a data-driven approach to auto-
matically infer such mappings from users’ position transition
histories. We have conducted a study to apply the approach
to career transitions data from software engineers among
seven tech companies. The result indicates the approach can
correctly infer relative progressions for many different posi-
tions. In the meantime, we also found the approach to be
sensitive to the noise in the data.
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